

INTEGRATS - MODULE 4

$$
\text { - } \int \tan x d x=\log |\sec x|+C
$$

We know that $\tan x=\sin x / \cos x$. Therefore,
$\int \tan x d x=\int(\sin x / \cos x) d x$.
Now, let's substitute $\cos \mathrm{x}=\mathrm{t}$, so that $\sin \mathrm{xdx}=-\mathrm{dt}$. Therefore,
$\int \tan \mathrm{xdx}=-\int(\mathrm{dt} / \mathrm{t})=-\log |\cos \mathrm{x}|+\mathrm{C}$
Or, $\int \tan \mathrm{xdx}=\log |\sec \mathrm{x}|+C$

$$
\begin{aligned}
& -\log |\cos x| \\
& =\log |\cos x|^{-1} \\
& =\log \left|\frac{1}{\cos x}\right|
\end{aligned}
$$

$$
\text { - } \int \sec x d x=\log |\sec x+\tan x|+C
$$

On multiplying both the numerator and denominator by $(\sec \mathrm{x}+\tan \mathrm{x})$, we have
$\int \sec x d x=\int\{\sec x(\sec x+\tan x) d x\} /(\sec x+\tan x)$
Now, let's substitute $(\sec x+\tan x)=t$, so that $\sec x \tan x+\sec ^{2} x=d t$
That is, $\sec x(\sec x+\tan x) d x=d t$.

Similarly, we can prove

$$
\int \cot x d x=\log |\sin x|+C
$$

Similarly, we can prove

$\int \operatorname{cosec} x d x=\log |\operatorname{cosec} x-\cot x|+C$

Therefore, $\int \sec x d x=\int(d t / t)=\log |t|+C=\log |\sec x+\tan x|+C$

LET'S RECALL......TRIGONOMETRIC IDENTITIES AND FORMULAE

Angle sum and difference identities

$\sin (x+y)=\sin x \cos y+\cos x \sin y$
$\sin (x-y)=\sin x \cos y-\cos x \sin y$
$\cos (x+y)=\cos x \cos y-\sin x \sin y$
$\cos (x-y)=\cos x \cos y+\sin x \sin y$
$\tan (\mathrm{x}+\mathrm{y})=\frac{\tan x+\tan y}{1-\tan x \tan y}$
$\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}$

Sum Identities (Sum to Product Identities)
$\cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$
$\cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$
$\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$
$\sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$
$\sin \mathrm{x}=2 \sin \frac{x}{2} \cos \frac{x}{2}=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}$
$\cos \mathrm{x}=\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}=1-2 \sin ^{2} \frac{x}{2}=2 \cos ^{2} \frac{x}{2}-1=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}$

$$
\tan \mathrm{x}=\frac{2 \tan \frac{x}{2}}{1-\tan ^{2} \frac{x}{2}}
$$

$$
\sin \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{2}}
$$

$$
\cos \frac{x}{2}= \pm \sqrt{\frac{1+\cos x}{2}}
$$

$\sin 3 x=3 \sin x-4 \sin ^{3} x$
$\cos 3 x=4 \cos ^{3} x-3 \cos x$

$$
\tan 3 x=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}
$$

Product Identities (Product to Sum Identities)
$2 \cos x \cos y=\cos (x+y)+\cos (x-y)$
$-2 \sin x \sin y=\cos (x+y)-\cos (x-y)$
$2 \sin x \cos y=\sin (x+y)+\sin (x-y)$
$2 \cos x \sin y=\sin (x+y)-\sin (x-y)$

INTEGRATION USING TRIGONOMETRIC IDENTITIES

Ex 7.3, 1
Find the integral of $\sin ^{2}(2 x+5)$
$\int \sin ^{2}(2 x+5) d x=\int \frac{1-\cos 2(2 x+5)}{2} d x$
$=\frac{1}{2} \int 1-\cos (4 x+10) d x$
$=\frac{1}{2}\left[\int 1 d x-\int \cos (4 x+10) d x\right]$
We know that

$$
\begin{aligned}
& \cos 2 \theta=1-2 \sin ^{2} \theta \\
& 2 \sin ^{2} \theta=1-\cos 2 \theta \\
& \sin ^{2} \theta=\frac{1}{2}[1-\cos 2 \theta]
\end{aligned}
$$

Replace θ by $(2 x+5)$

$$
\sin ^{2}(2 x+5)=\frac{1-\cos 2(2 x+5)}{2}
$$

$$
=\frac{1}{2}\left[x-\frac{\sin (4 x+10)}{4}+C\right]
$$

$$
=\frac{x}{2}-\frac{1}{8} \sin (4 x+10)+C
$$

Ex 7.3, 3
Integrate the function $-\cos 2 x \cos 4 x \cos 6 x$
We know that

$$
\cos \mathrm{A} \cos \mathrm{~B}=[\cos (A+B)+\cos (A-B)]
$$

Replace A by $2 x$ \& B by $4 x$

$$
2 \cos 2 x \cos 4 x=\cos (2 x+4 x)+\cos (2 x-4 x)
$$

$2 \cos 2 x \cos 4 x=\cos 6 x+\cos 2 x \quad(\because \cos (-x)=\cos x)$ $\cos 2 x \cos 4 x=\frac{1}{2}(\cos 6 x+\cos 2 x)$
$\int(\cos 2 x \cos 4 x \cos 6 x) d x$

$$
\begin{aligned}
& =\int\left(\frac{1}{2}(\cos 6 x+\cos 2 x) \cos 6 x\right) d x \\
& =\frac{1}{2}\left[\int(\cos 6 x)^{2} d x+\int \cos 2 x \cdot \cos 6 x d x\right]
\end{aligned}
$$

Solving both these integrals separately

$\int\left(\cos ^{2} 6 x\right)$

We know that

$$
\cos ^{2} \theta=\frac{\cos 2 \theta+1}{2}
$$

Replace θ by $6 x$
$\cos ^{2} 6 x=\frac{\cos 12 x+1}{2}$
$\int \cos ^{2} 6 x d x$

$$
=\frac{1}{2} \int(\cos 12 x+1) d x
$$

$\int \cos 2 x \cos 6 x d x$

We know that

$$
\begin{aligned}
& 2 \operatorname{co} A \cos B=\cos (A+B)+\cos (A-B) \\
& \cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)
\end{aligned}
$$

Replace A by $2 x$ \& B by $6 x$
$\cos 2 x \cos 6 x$

$$
\begin{aligned}
& =\frac{1}{2}[\cos (2 x+6 x)+\cos (2 x-6 x) \\
& =\frac{1}{2}[\cos 8 x+\cos 4 x] d x
\end{aligned}
$$

$\int \cos 2 x \cos 6 x d x$

$$
=\frac{1}{2} \int(\cos 8 x+\cos 4 x) d x
$$

$\int(\cos 2 x \cos 4 x \cos 6 x) d x$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{1}{2} \int(\cos 12 x+1) d x+\frac{1}{2} \int(\cos 8 x+\cos 4 x) d x\right] \\
& =\frac{1}{4}\left[\int \cos 12 x d x+\int 1 d x+\int \cos 8 x d x+\int \cos 4 x d x\right] \\
& =\frac{1}{4}\left[\frac{\sin 12 x}{12}+x+\frac{\sin 8 x}{8}+\frac{\sin 4 x}{4}\right]+C
\end{aligned}
$$

Integrate $\frac{\cos x}{1+\cos x}$

$$
\int \frac{\cos x}{1+\cos x} d x
$$

$$
=\int\left(\frac{\cos x+1-1}{1+\cos x}\right) d x
$$

$$
=\int\left(\frac{1+\cos x-1}{1+\cos x}\right) d x
$$

$$
=\int\left(\frac{1+\cos x}{1+\cos x}-\frac{1}{1+\cos x}\right) d x
$$

$$
=\int 1-\frac{1}{1+\cos x} d x
$$

$$
=\int 1 d x-\int \frac{1}{1+\cos x} d x
$$

$=\int 1 d x-\int \frac{1}{2 \cos ^{2} \frac{x}{2}} d x$
$=\int 1 d x-\int \frac{1}{2} \sec ^{2} \frac{x}{2} d x$
$=\int 1 d x-\frac{1}{2} \int \sec ^{2} \frac{x}{2} d x$
$=x-\frac{1}{2} \frac{\tan \frac{x}{2}}{\frac{1}{2}}+C \quad \int \sec ^{2}(a x+b) d x=\frac{\tan (a x+b)}{a}+C$
$=x-\frac{2}{2} \tan \frac{x}{2}+C$
$=x-\tan \frac{x}{2}+C$

Integrate the function $\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}$

$$
=2 \int \frac{(\cos x-\cos \alpha)(\cos x+\cos \alpha)}{(\cos x-\cos \alpha)} d x
$$

$$
=2 \int(\cos x+\cos \alpha) d x
$$

$$
\int \frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha} d x
$$

$$
=\int \frac{\left(2 \cos ^{2} x-1\right)-\left(2 \cos ^{2} \alpha-1\right)}{\cos x-\cos \alpha} d x\left(\cos 2 \theta=2 \cos ^{2} \theta-1\right)
$$

$$
=2\left(\int \cos x d x+\int \cos \alpha d x\right)
$$

$$
=\int \frac{2 \cos ^{2} x-1-2 \cos ^{2} \alpha+1}{\cos x-\cos \alpha} d x
$$

$$
=2\left(\int \cos x d x+\cos \alpha \int 1 . d x\right)
$$

$$
=\int \frac{2 \cos ^{2} x-2 \cos ^{2} \alpha+1-1}{\cos x-\cos \alpha} d x
$$

$=2(\sin x+x \cos \alpha)+C$

$$
=\int \frac{2\left(\cos ^{2} x-\cos ^{2} \alpha\right)}{\cos x-\cos \alpha} d x
$$

Ex7.3,16

$\int \tan ^{4} x d x$
$\int \tan ^{2} x \cdot \sec ^{2} x d x$

Let $\tan x=t$

$$
\sec ^{2} x=\frac{d t}{d x}
$$

$$
\sec ^{2} x d x=d t
$$

Now,
$\int \tan ^{2} x \cdot \sec ^{2} x . d x$
$=\int t^{2} . d t=\frac{t^{3}}{3}+C$
$=\frac{\tan ^{3} x}{3}+C_{1}$
$\int \tan ^{2} x d x$
$=\int\left(\sec ^{2} x-1\right) d x$
$=\int \sec ^{2} x d x-\int 1 . d x$
As $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$
$\& \int \sec ^{2} x d x=\tan x+C$
$=\tan x-x+C_{2}$

Now, $\int \tan ^{4} x d x=\int \tan ^{2} x \cdot \sec ^{2} x d x-\int \tan ^{2} x d x$

$$
\begin{aligned}
& =\frac{\tan ^{3} x}{3}+C_{1}-\left(\tan x-x+C_{2}\right) \\
& =\frac{\tan ^{3} x}{3}-\tan x+x+C \quad\left(\text { Where } C=C_{1}-C_{2}\right)
\end{aligned}
$$

Solving both these integrals separately

$\int \tan ^{2} x \cdot \sec ^{2} x d x$	$\int \tan ^{2} x d x$
Let $\tan x=t$	$=\int\left(\sec ^{2} x-1\right) d x$
$\sec ^{2} x=\frac{d t}{d x}$	$=\int \sec ^{2} x d x-\int 1 . d x$
$\sec ^{2} x d x=d t$	As $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$
Now,	\& $\int \sec ^{2} x d x=\tan x+C$
$\int \tan ^{2} x \cdot \sec ^{2} x \cdot d x$	$=\tan x-x+C_{2}$
$\begin{aligned} & =\int t^{2} \cdot d t=\frac{t^{3}}{3}+C \\ & =\frac{\tan ^{3} x}{3}+C_{1} \end{aligned}$	
Now, $\int \tan ^{4} x d x=\int \tan ^{2} x \cdot \sec ^{2} x d x-\int \tan ^{2} x d x$	
$=\frac{\tan ^{3} x}{3}+C_{1}-\left(\tan x-x+C_{2}\right)$	
$=\frac{\tan ^{3} x}{3}-\tan x+x+C \quad\left(\right.$ Where $\left.C=C_{1}-C_{2}\right)$	

Ex 7.3, 20

Integrate the function $\frac{\cos 2 x}{(\cos x+\sin x)^{2}}$

$$
\int \frac{\cos 2 x}{(\cos x+\sin x)^{2}}
$$

$$
=\int \frac{\cos ^{2} x-\sin ^{2} x}{(\cos x+\sin x)^{2}} d x \quad\left(\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta\right)
$$

$$
=\int \frac{(\cos x-\sin x)(\cos x+\sin x)}{(\cos x+\sin x)^{2}} d x
$$

$$
=\int \frac{\cos x-\sin x}{\cos x+\sin x} d x
$$

Let $\cos x+\sin x=t$
Differentiating w.r.t. x

$$
-\sin x+\cos x=\frac{d t}{d x}
$$

$$
(\cos x-\sin x) d x=d t
$$

Thus, our equation becomes

$$
\begin{aligned}
& =\int \frac{1}{t} d t \\
& =\log |t|+C \\
& =\log |\cos x+\sin x|+C
\end{aligned}
$$

$$
\int \frac{1}{\cos (x-a) \cos (x-b)}
$$

Multiply \& Divide by $\sin (a-b)$

$$
\begin{aligned}
& =\int \frac{\sin (a-b)}{\sin (a-b)} \times \frac{1}{\cos (x-a) \cos (x-b)} d x \\
& =\frac{1}{\sin (a-b)} \int \frac{\sin (a-b)}{\cos (x-a) \cos (x-b)} d x \\
& =\frac{1}{\sin (a-b)} \int \frac{\sin (a-b+x-x)}{\cos (x-a) \cos (x-b)} d x \\
& =\frac{1}{\sin (a-b)} \int \frac{\sin ((x-b)+(a-x))}{\cos (x-a) \cos (x-b)} d x
\end{aligned}
$$

$$
=\frac{1}{\sin (a-b)} \int \frac{\sin ((x-b)-(x-a))}{\cos (x-a) \cos (x-b)} d x
$$

$U \operatorname{sing} \sin (A-B)=\sin A \cos B-\cos A \sin B$
Replace A by $(x-b)$ \& B by $(x-b)$
$\sin ((x-b)-(x-a))=\sin (x-b) \cos (x-a)-\cos (x-b) \sin (x-a)$

$$
\begin{aligned}
& =\frac{1}{\sin (a-b)} \int \frac{\sin (x-b) \cos (x-a)-\cos (x-b) \sin (x-a)}{\cos (x-a) \cos (x-b)} d x \\
& =\frac{1}{\sin (a-b)} \int\left(\frac{\sin (x-b) \cos (x-a)}{\cos (x-a) \cos (x-b)}-\frac{\cos (x-b) \sin (x-a)}{\cos (x-a) \cos (x-b)}\right) d x \\
& =\frac{1}{\sin (a-b)}\left[\int\left(\frac{\sin (x-b)}{\cos (x-b)}-\frac{\sin (x-a)}{\cos (x-a)}\right) d x\right]
\end{aligned}
$$

$$
=\frac{1}{\sin (a-b)}\left[\int \tan (x-b)-\tan (x-a) d x\right]
$$

$$
=\frac{1}{\sin (a-b)}\left[\int \tan (x-b) d x-\int \tan (x-a) d x\right]
$$

Using $\int \tan x d x=-\log |\cos x|+C$

HOME
 ASSIGNIMENT

$=\frac{1}{\sin (a-b)}[-\log \cos (x-b) \mid+\log \cos (x-a)]+c$
EXERCISE - 7.3
Q. NO -
$=\frac{1}{\sin (a-b)}[\log \cos (x-a) \mid-\log \cos (x-b)]+C$

$$
=\frac{1}{\sin (a-b)} \log \left\lvert\, \frac{\cos (x-a)}{\cos (x-b) \mid}+C\right.
$$

TMHECRATS MODUTE - 5

INTEGRATION OF SOME PARTICULAR

TיTTMT NTMT RTN

Integrals of somne special functions

1. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} 108\left|\frac{x-a}{x+a}\right|+c$
2. $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} 108\left|\frac{a+x}{a-x}\right|+c$
3. $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{2}+1 \frac{x}{a}+c$
4. $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$
5. $\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|+c$
6. $\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c$

Ex 7.4, 1
$\frac{3 x^{2}}{x^{6}+1}$
$\int \frac{3 x^{2}}{x^{6}+1} d x=\int \frac{3 x^{2}}{\left(x^{3}\right)^{2}+1} d x$
Let $x^{3}=t$
Diff both sides w.r.t. x

$$
\begin{aligned}
3 x^{2} d x=d t & \\
\therefore \int \frac{3 x^{2}}{x^{6}+1} d x & =\int \frac{d t}{t^{2}+1} \\
& =\int \frac{d t}{t^{2}+(1)^{2}} \\
& =\tan ^{-1}(t)+C \\
& =\tan ^{-1}\left(x^{3}\right)+C
\end{aligned}
$$

It is of form

$$
\int \frac{d t}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C
$$

Ex 7.4, 2
$\frac{1}{\sqrt{1+4 x^{2}}}$
$\int \frac{1}{\sqrt{1+4 x^{2}}} d x=\int \frac{1}{\sqrt{4\left(\frac{1}{4}+x^{2}\right)}} \cdot d x \quad$ (Taking 4 common)
$=\frac{1}{2} \int \frac{1}{\sqrt{x^{2}+\frac{1}{4}}} \cdot d x$
$=\frac{1}{2} \int \frac{1}{\sqrt{x^{2}+\left(\frac{1}{2}\right)^{2}}} \cdot d x$
It is of form
$=\frac{1}{2}\left[\log \left|x+\sqrt{x^{2}+\frac{1}{4}}\right|\right]+C$
$=\frac{1}{2} \log \left|x+\sqrt{\frac{4 x^{2}+1}{4}}\right|+C$
$=\frac{1}{2} \log \left|2 x+\sqrt{1+4 x^{2}}\right|+C$

$$
\begin{aligned}
& \text { Ex } 7.4,4 \\
& \frac{1}{\sqrt{9-25 x^{2}}} \\
& \int \frac{1}{\sqrt{9-25 x^{2}}} d x \\
& =\int \frac{1}{\sqrt{25\left(\frac{9}{25}-x^{2}\right)}} d x \\
& =\frac{1}{5} \int \frac{1}{\sqrt{\frac{9}{25}-x^{2}}} d x \\
& =\frac{1}{5}\left[\sin ^{-1} \frac{x}{\frac{3}{3}}+C\right] \\
& =\frac{1}{5} \sin ^{-1} \frac{5 x}{3}+C
\end{aligned}
$$

Ex 7.4, 9

$$
\frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}}
$$

Let $\tan x=t$
Diff both sides w.r.t. x

$$
\sec ^{2} x d x=d t
$$

$$
\begin{aligned}
& \text { It is of form } \\
& \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+C
\end{aligned}
$$

$$
\therefore \int \frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}}=\int \frac{1}{\sqrt{t^{2}+(2)^{2}}} \cdot d t
$$

SOLVE THE FOLLOWING : EX - 7.4
 Q.NO: 3,5,7,8.

$$
=\log \left|t+\sqrt{t^{2}+(2)^{2}}\right|+C
$$

$$
=\log \left|\tan x+\sqrt{\tan ^{2} x+4}\right|+C
$$

TIVPORTANT FORIVS TO BE CONVERTED INTO SPECIAL INTEGRALS
(i) Form I $\int \frac{1}{a x^{2}+b x+c} d x$ or $\frac{1}{\sqrt{a x^{2}+b x+c}} d x$

Express $a x^{2}+b x+c$ as sum or difference of two squares i.e.,
$a x^{2}+b x+c=a\left[x^{2}+\frac{b}{a} x+\frac{c}{a}\right]=a\left[\left(x+\frac{b}{2 a}\right)^{2}+\left(\frac{c}{a}-\frac{b^{2}}{4 a^{2}}\right)\right]$
We find the integral reduced to the form $\frac{1}{a} \int \frac{d t}{t^{2} \pm k^{2}}$ and hence evaluate.
Example: Find $\int \frac{d x}{9 x^{2}+6 x+5} \quad(a+b)^{2}$
$9 x^{2}+6 x+5=9\left[x^{2}+\frac{6}{9} x+\frac{5}{9}\right]=9\left[x^{2}+2 \cdot x \cdot \frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\frac{5}{9}-\left(\frac{1}{3}\right)^{2}\right]$
Alternate method
Since $9 \mathrm{x}^{2}$ is a perfect square so can be written as (3x) ${ }^{2}$
$9 x^{2}+6 x+5=(3 \mathrm{x})^{2}+2(3 \mathrm{x})(1)+1$

$$
=9\left[\left(x+\frac{1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}\right]
$$

$\therefore \int \frac{d x}{9 x^{2}+6 x+5}=\frac{1}{9} \times \frac{1}{2 / 3} \tan ^{-1}\left(\frac{x+1 / 3}{2 / 3}\right)+C=\frac{1}{6} \tan ^{-1}\left(\frac{3 x+1}{2}\right)+C$

$$
\begin{aligned}
& =(3 \mathrm{x}+1)^{2}+2^{2} \\
& \therefore \int \frac{d x}{9 x^{2}+6 x+5}=\int \frac{d x}{(3 \mathrm{x}+1)^{2}+2^{2}} \\
& \quad=\frac{1}{2 \times 3} \tan ^{-1}\left(\frac{3 x+1}{2}\right)+C
\end{aligned}
$$

(ii) Form II -

$$
\int \frac{p x+q}{a x^{2}+b x+c} d x \text { or } \int \frac{p x+q}{\sqrt{a x^{2}+b x+c}} d x
$$

$$
\text { Put } p x+q=A \frac{d}{d x}\left(a x^{2}+b x+c\right)+B
$$

The is split into two parts, the first contains $A($ inedifferentiation ofthe gradratic) and the other is a constant $B(\quad)$. Now A and B can be found out by equating the coefficient of each term of the above expression on LHS and RHS.
Example: Find $\int \frac{5 x-2}{3 x^{2}+2 x+1} d x$
Write $5 x-2=A(6 x+2)+B$

Comparing the coefficients of x,
we get $5=6 A \Rightarrow A=5 / 6$
Comparing the constants,
we get $-2=2 A+B$

$$
\Rightarrow-2=2\left(\frac{5}{6}\right)+B \Rightarrow B=-11 / 3
$$

$\therefore \quad 5 x-2=\frac{5}{6}(6 x+2)-\frac{11}{3}$

Ex 7．4， 14

$$
\frac{1}{\sqrt{8+3 x-x^{2}}}
$$

$\int \frac{1}{\sqrt{8+3 x-x^{2}}} d x$
$=\int \frac{1}{\sqrt{8-\left(x^{2}-3 x\right)}} d x$
$=\int \frac{1}{\sqrt{8-\left[x^{2}-2(x)\left(\frac{3}{2}\right)\right]}} d x$
$=\int \frac{1}{\sqrt{8-\left[x^{2}-2(x)\left(\frac{3}{2}\right)+\left(\frac{3}{2}\right)^{2}-(\right.} ⿻ ⿱ 一 ⿱ 日 一 丨 一 口 𧘇}$
$=\int \frac{1}{\sqrt{8-\left[\left(x-\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}\right]}} d x$
$=\int \frac{1}{\sqrt{8-\left(x-\frac{3}{2}\right)^{2}+\frac{9}{4}}} d x$
$=\int \frac{1}{\sqrt{8+\frac{9}{4}-\left(x-\frac{3}{2}\right)^{2}}} d x$
$=\int \frac{1}{\sqrt{\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}}} d x$
$=\int \frac{1}{\sqrt{\left(\frac{\sqrt{41}}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}}} d x$
$=\sin ^{-1}\left(\frac{x-\frac{3}{2}}{\frac{\sqrt{41}}{2}}\right)+C$
$=\sin ^{-1}\left(\frac{2 x-3}{\sqrt{41}}\right)+C$

It is of form

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}+C
$$

$\int \frac{d x}{\sqrt{9 x-4 x^{2}}}$ equals
A. $\frac{1}{9} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+C$
B. $\frac{1}{9} \sin ^{-1}\left(\frac{8 x-9}{9}\right)+C$
C. $\frac{1}{3} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+C$
D. $\frac{1}{2} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+C$
$\int \frac{d x}{\sqrt{9 x-4 x^{2}}}=\int \frac{d x}{\sqrt{-4\left(x^{2}-\frac{9}{4} x\right)}}$ (Taking-4 common)

$$
=\int \frac{d x}{\sqrt{-4\left(x^{2}-2(x)\left(\frac{9}{8}\right)\right)}}
$$

$$
=\int \frac{d x}{\sqrt{-4\left[x^{2}-2(x)\left(\frac{9}{8}\right)+\left(\frac{9}{8}\right)^{2}-\left(\frac{9}{8}\right)^{2}\right]}}
$$

Ex 7.4, 19

Integrate $\frac{6 x+7}{\sqrt{(x-5)(x-4)}}$

$$
\begin{aligned}
& \int \frac{6 x+7}{\sqrt{(x-5)(x-4)}} \cdot d x \\
= & \int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}} \cdot d x
\end{aligned}
$$

$$
6 x+7=A(2 x-9)+B
$$

Comparing coefficients of x, $2 A=6 \Rightarrow A=3$

$$
\begin{aligned}
& \text { Rough } \\
& \left(x^{2}-9 x+20\right)^{\prime}=2 x-9
\end{aligned}
$$

Comparing constants,

$$
-9 A+B=7 \Rightarrow-9(3)+B=7 \Rightarrow B=34
$$

$$
\begin{equation*}
\therefore \int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}} d x=3 \int \frac{2 x-9}{\sqrt{\left(x^{2}-9 x+20\right)}} d x+34 \int \frac{d x}{\sqrt{\left(x^{2}-9 x+20\right)}} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\mathrm{I}_{1} & =3 \int \frac{2 x-9}{\sqrt{\left(x^{2}-9 x+20\right)}} \cdot d x \\
& =3 \int \frac{1}{\sqrt{t}} \cdot d t=3 \int(t)^{\frac{-1}{2}} \cdot d t \\
& =3 \frac{t^{\frac{1}{2}}}{\frac{1}{2}}+C_{1}=6 t^{\frac{1}{2}}+C_{1} \\
\mathrm{I}_{1} & =6 \sqrt{x^{2}-9 x+20}+C_{1} \\
\mathrm{I}_{2} & =34 \int \frac{1}{\sqrt{x^{2}-9 x+20}} \cdot d x \\
& =34 \int \frac{1}{\sqrt{x^{2}-2(x)\left(\frac{9}{2}\right)+\left(\frac{9}{2}\right)^{2}-\left(\frac{9}{2}\right)^{2}+20}} \cdot d x \\
& =34 \int \frac{1}{\sqrt{\left(x-\frac{9}{2}\right)^{2}-\left(\frac{9}{2}\right)^{2}+20}} \cdot d x \\
& =34 \int \frac{1}{\sqrt{\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} \cdot d x
\end{aligned}
$$

Let $x^{2}-9 x+20=t$

$$
\begin{aligned}
& =34\left[\log \left|x-\frac{9}{2}+\sqrt{\left(x-\frac{9}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}\right|\right]+C_{2} \\
\mathrm{I}_{2} & =34 \log \left|x-\frac{9}{2}+\sqrt{x^{2}-9 x+20}\right|+C_{2}
\end{aligned}
$$

Now, putting values of I_{1} and I_{2} in eq. 1

$$
\begin{aligned}
& \int \frac{6 x+7}{\sqrt{(x-2)(x-4)}} \cdot d x \\
& \quad=I_{1}+I_{2} \\
& \quad=6 \sqrt{x^{2}-9 x+20}+34 \log \left|x-\frac{9}{2}+\sqrt{x^{2}-9 x+20}\right|+C
\end{aligned}
$$

Integrate $\frac{5 x+3}{\sqrt{x^{2}+4 x+10}}$

$$
\int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x
$$

Rough

$$
5 \mathbf{x}+\mathbf{3}=\mathrm{A}(2 \mathbf{x}+4)+\mathbf{B} \quad\left(x^{2}+4 x+10\right)^{\prime}=2 x+4
$$

Comparing coefficients of x, $2 A=5 \Rightarrow A=5 / 2$

Comparing constants,

$$
4 A+B=3 \Rightarrow \frac{4(5)}{2}+B=3 \Rightarrow B=-7
$$

$$
\begin{equation*}
\therefore \int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\frac{5}{2} \int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x-7 \int \frac{d x}{\sqrt{x^{2}+4 x+10}} d x \tag{1}
\end{equation*}
$$

Now solving,
$\mathrm{I}_{1}=\frac{5}{2} \int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} \cdot d x$, we get

$$
=\frac{5}{2} \int \frac{1}{\sqrt{t}} \cdot d t
$$

$\mathrm{I}_{1}=5 \sqrt{x^{2}+4 x+10}+C_{1}$

Solving \boldsymbol{I}_{2}

$$
\begin{aligned}
\mathrm{I}_{2} & =\int \frac{7}{\sqrt{x^{2}+4 x+10}} \cdot d x \\
& =7 \int \frac{1}{\sqrt{(x+2)^{2}+6}} \cdot d x=7 \int \frac{1}{\sqrt{(x+2)^{2}+(\sqrt{6})^{2}}} \cdot d x \\
\mathrm{I}_{2} & =7 \log \left|x+2+\sqrt{x^{2}+4 x+10}\right|+C_{2}
\end{aligned}
$$

Putting the values of I_{1} and I_{2} in (1)

$$
\begin{aligned}
& \int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} \cdot d x \quad=I_{1}-I_{2} \\
&= 5 \sqrt{x^{2}+4 x+10}+C_{1}-7 \log \left|x+2+\sqrt{x^{2}+4 x+10}\right|+C_{2} \\
&= \mathbf{5} \sqrt{x^{2}+4 x+10}-7 \log \left|x+2+\sqrt{x^{2}+\mathbf{4 x}+\mathbf{1 0}}\right|+C
\end{aligned}
$$

HOIME ASSIGNIMENT.....
 EXERCISE-7.4
 ©. NO: 12, 13, 16, 21, 2 .

TNHECRATS

MODULE - 6

INTEGRATION BY PARTIAL FRACTIONS

* We know that a rational function is a ratio of two polynomials $\frac{P(x)}{Q(x)}$, where $Q(x) \neq 0$. If the degree of $P(x)$ is less than the degree of $Q(x)$, then it is a proper function, otherwise, it is called improper.
Even if a fraction is improper, it can be reduced to a proper fraction by the long division process.
* So, if $\frac{P(x)}{Q(x)}$ is improper, then $\frac{P(x)}{Q(x)}=\mathrm{T}(x)+\frac{R(x)}{Q(x)}$, where $\mathrm{T}(x)$ is a polynomial in x and $\frac{R(x)}{Q(x)}$ is a proper rational function.
To evaluate $\int \frac{P(x)}{Q(x)} d x$, where $\frac{P(x)}{Q(x)}$ is a proper rational function, it is possible to write the integrand as a sum of simpler rational functions by a method called partial fraction decomposition.

What are Partial Fractions?
We can do this directly:

$$
\frac{2}{x-2}+\frac{3}{x+1} \leadsto \frac{5 x-4}{x^{2}-x-2}
$$

... but how do we go in the opposite direction?

That is what we are going to discover:

> How to find the "parts" that make the single fraction (the "partial fractions").

Why Do We Want Them?
Because the partial fractions are each simpler.
This can help integrate the more complicated fraction.

Partial Fraction Decomposition

When the denominator contains nonrepeated linear
Step 2: Write one partial fraction for each of those factors

$$
\frac{5 x-4}{(x-2)(x+1)}=\frac{A}{x-2}+\frac{B}{x+1}
$$

Step 3: Multiply through by the denominator so we no longer have fractions

$$
5 x-4=A(x+1)+B(x-2)
$$

Step 4: Now find the constants A and B
Substituting the roots, or "zeros", of $(x-2)$ and ($x+1$) can help:

factors

C
A

S
E
(i)

Sometimes you may get a factor with an exponent, like $(x-2)^{3} \ldots$

You need a partial fraction for each exponent from 1 up.

$$
\text { Example: } \frac{1}{(x-2)^{3}}
$$

Has partial fractions

$$
\frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{C}{(x-2)^{3}}
$$

When you have a quadratic factor you need to include this partial fraction:

When the

 denominator contains a quadratic factor- Because $(x+3)$ has an exponent of 1 , it needs one term A
- And $\left(x^{2}+3\right)$ is a quadratic, so it will need $B x+C$:

$$
\frac{x^{2}+15}{(x+3)\left(x^{2}+3\right)}=\frac{A}{x+3}+\frac{B x+C}{x^{2}+3}
$$

The following table indicates the types of simple partial fractions which can be associated with various rational functions:

S.No	Oorm of the Rational Function	Form of the Partial Fraction
	$\frac{p x+q}{(x-a)(x-b)}, a \neq b$	$\frac{\mathrm{~A}}{x-a}+\frac{\mathrm{B}}{x-b}$
	$\frac{2 x+q}{(x-a)^{2}}$	$\frac{\mathrm{~A}}{x-a}+\frac{\mathrm{B}}{(x-a)^{2}}$
	$\frac{p x 3 .+q x+r}{(x-a)(x-b)(x-c)}$	$\frac{\mathrm{A}}{x-a}+\frac{\mathrm{B}}{x-b}+\frac{\mathrm{C}}{x-c}$
	$\frac{p x 4++q x+r}{(x-a)^{2}(x-b)}$	$\frac{\mathrm{A}}{x-a}+\frac{\mathrm{B}}{(x-a)^{2}}+\frac{\mathrm{C}}{x-b}$
	$\frac{p x^{5}+q x+r}{(x-a)\left(x^{2}+b x+c\right)}$	$\frac{\mathrm{A}}{x-a}+\frac{\mathrm{B} x+\mathrm{C}}{x^{2}+b x+c}$
Where $x^{2}+b x+c$ cannot be factorised further		

$$
\begin{aligned}
\frac{3 x-1}{(x-1)(x-2)(x-3)} & =\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)} \\
& =\frac{A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)}{(x-1)(x-2)(x-3)}
\end{aligned}
$$

By cancelling denominator

$$
3 x-1=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)
$$

$$
\text { Putting } x=1 \text { in (1) }
$$

$$
2=A(-1)(-2)+B \times 0+C \times 0
$$

$$
2=2 A \Longrightarrow A=1
$$

Similarly putting $x=2$, in (1), we get $B=-5$
Similarly putting $x=3$, in (1), we get $C=4$ \square
Hence we can write it as

$$
\begin{aligned}
\int \frac{3 x-1}{(x-1)(x-2)(x-3)} d x & =\int \frac{1}{x-1}+\frac{-5}{x-2}+\frac{4}{x-3} d x \\
& =\int \frac{1}{x-1} d x-5 \int \frac{1}{x-2} d x+4 \int \frac{1}{x-3} d x \\
& =\log |x-1|-5 \log |x-2|+4 \log |x-3|+C
\end{aligned}
$$

EX 7.5, Q.I2

$$
\frac{x^{3}+x+1}{x^{2}-1} \quad(\text { improper fraction })
$$

$$
\begin{aligned}
\int \frac{x^{3}+x+1}{x^{2}-1} d x & =\int\left[x+\frac{2 x+1}{x^{2}-1}\right] d x \\
& =\int x d x+\int \frac{2 x}{x^{2}-1} d x+\int \frac{1}{x^{2}-1} d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rough } \\
& \\
& x ^ { 2 } - 1 \longdiv { x } \begin{array} { l }
{ x ^ { 3 } + x + 1 } \\
{ } \\
{ x ^ { 3 } - x }
\end{array}
\end{aligned}
$$

$(-) \quad(+)$
$2 x+1$

$$
\begin{aligned}
& \text { To solve } I_{1} \\
& \text { Let } t=x^{2}-1 \\
& \qquad d t=2 x d x
\end{aligned}
$$

To solve I_{2}
It is of the form
$\int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|$
$=\frac{x^{2}}{2}+\log |t|+\frac{1}{2} \log \left|\frac{x-1}{x+1}\right|+C$
$=\frac{x^{2}}{2}+\log \left(x^{2}-1\right)+\frac{1}{2} \log \left|\frac{x-1}{x+1}\right|+C$

$$
\frac{2}{(1-x)\left(1+x^{2}\right)}
$$

We can write the integrand as

$$
\frac{-2}{(x-1)\left(1+x^{2}\right)}
$$

Let

$$
\begin{aligned}
\frac{-2}{(x-1)\left(1+x^{2}\right)} & =\frac{A}{(x-1)}+\frac{B x+C}{\left(1+x^{2}\right)} \\
& =\frac{A\left(1+x^{2}\right)+(B x+C)(x-1)}{(x-1)\left(1+x^{2}\right)}
\end{aligned}
$$

By cancelling denominator

$$
\begin{equation*}
-2=A\left(1+x^{2}\right)+(B x+C)(x-1) \tag{1}
\end{equation*}
$$

Putting $x=1$, in (1)

$$
\begin{aligned}
& -2=A(1+1)+(B x+C) 0 \\
& \therefore \quad A=-1
\end{aligned}
$$

Putting $x=0$, in (1)
$-2=A(1)+C(-1)$
we get $C=1 \square$
Equating coefficient of x^{2} on both sides of (1) $O=A+B \Rightarrow B=-A \Rightarrow B=1$

So, we can write
$\int \frac{-2}{(1-x)\left(1+x^{2}\right)} d x=\int \frac{-1}{x-1} d x+\int \frac{x+1}{x^{2}+1} d x$

$$
\begin{gathered}
=-\int \frac{1}{x-1} d x+\int \frac{x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x \\
\downarrow \\
\mathrm{I}_{1}
\end{gathered}
$$

Solving $\mathbf{I}_{1}=\int \frac{x}{x^{2}+1} d x$

$$
\begin{aligned}
& \text { Let } t=x^{2}+1 \\
& d t=2 x \\
& d x
\end{aligned}
$$

Hence

$$
\begin{aligned}
\int \frac{x}{x^{2}+1} d x=\int \frac{d t}{2(t)} & =\frac{1}{2} \log |t|+C_{1} \\
& =\frac{1}{2} \log \left|x^{2}+1\right|+C_{1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int \frac{2}{(1-x)\left(1+x^{2}\right)} d x & =\int \frac{-1}{x-1} d x+\int \frac{x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x \\
& =-\log |x-1|+\frac{1}{2} \log \left|x^{2}+1\right|+\tan ^{-1} x+C \\
& =-\boldsymbol{\operatorname { l o g }}|\boldsymbol{x}-\mathbf{1}|+\frac{\mathbf{1}}{2} \boldsymbol{\operatorname { l o g }}\left(\boldsymbol{x}^{2}+\mathbf{1}\right)+\boldsymbol{\operatorname { t a n }}^{-1} x+\boldsymbol{C}
\end{aligned}
$$

We can write integrand as
$\frac{1}{x\left(x^{n}+1\right)}=\frac{1}{x\left(x^{n}+1\right)} \times \frac{x^{n-1}}{x^{n-1}}$ (multiply numerator and denominator by x^{n-1}

$$
=\frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)}
$$

$$
\begin{aligned}
& \text { Let } \mathrm{t}=x^{n} \\
& d t=n x^{n-1} d x
\end{aligned}
$$

Therefore $\int \frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)} d x=\frac{1}{n} \int \frac{d t}{t(t+1)}$
We can write the integrand as

$$
\frac{1}{t(t+1)}=\frac{A}{t}+\frac{B}{t+1}
$$

By cancelling denominator

$$
\begin{equation*}
1=A(t+1)+B t \tag{1}
\end{equation*}
$$

Putting $\mathrm{t}=0$ in (1) $A=1$ \square
Similarly putting $\mathrm{t}=-1$ in (1) $B=-1$ \square
Thus, $\quad \int \frac{d t}{t(t+1)}=\int \frac{1 d t}{t}-\int \frac{-1}{t+1} d t=\log |t|-\log |t+1|+C$

$$
=\log \left|\frac{t}{t+1}\right|+C
$$

$$
\int \frac{1}{x\left(x^{n}+1\right)}=\frac{1}{n} \log \left|\frac{x^{n}}{x^{n}+1}\right|+C
$$

Ex 7.5, 18
Integrate the function $\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}$
(Improper
fraction)
Let $\mathrm{t}=x^{2}$

$$
\begin{aligned}
\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)} & =\frac{(t+1)(t+2)}{(t+3)(t+4)} \\
& =\frac{t^{2}+3 t+2}{t^{2}+7 t+12} \\
& =1+\frac{-4 t-10}{t^{2}+7 t+12} \\
& =1-\frac{(4 t+10)}{(t+3)(t+4)}
\end{aligned}
$$

Rough	
$t ^ { 2 } + 7 t + 1 2 \longdiv { t ^ { 2 } + 3 t + 2 }$	
	$\frac{t^{2}+7 t+12}{-4 t-10}$

We can write $\frac{4 t+10}{(t+3)(t+4)}=\frac{A}{(t+3)}+\frac{B}{(t+4)}$

$$
\begin{equation*}
4 t+10=A(t+4)+B(t+3) \tag{1}
\end{equation*}
$$

Putting $\mathrm{t}=-4$ in (1), we get $B=6$
Putting $\mathrm{t}=-3$ in (1), we get $A=-2$

Hence we can write $\frac{4 t+10}{(t+3)(t+4)}=\frac{-2}{(t+3)}+\frac{6}{(t+4)}$

Therefore

$$
\begin{aligned}
\int \frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)} d x & =\int 1 d x-\left[\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}\right] d x \\
& =\int 1 \cdot d x+\int \frac{2}{\left(x^{2}+3\right)} d x-\int \frac{6}{\left(x^{2}+4\right)} d x \\
& =\int 1 \cdot d x+2 \int \frac{1}{x^{2}+(\sqrt{3})^{2}} d x-6 \int \frac{1}{\left(x^{2}+2^{2}\right)} d x \\
& =x+2 \times \frac{1}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}-6 \times \frac{1}{2} \tan ^{-1} \frac{x}{2}+C \\
& =x+\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)-3 \tan ^{-1}\left(\frac{x}{2}\right)+C
\end{aligned}
$$

$$
\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}
$$

Can you suggest any other alternate method to solve this
$\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int \frac{d t}{(t+1)(t+3)}$ sum...?

$$
\begin{aligned}
& =\frac{1}{2} \int \frac{(t+3)-(t+1)}{(t+1)(t+3)} d t \quad[\text { multiplying and dividing by } 2] \\
& =\frac{1}{2} \int\left(\frac{1}{t+1}-\frac{1}{t+3}\right) d t \\
& =\frac{1}{2}\left[\int \frac{1}{t+1} d t-\int \frac{1}{t+3} d t\right] \\
& =\frac{1}{2}[\log |t+1|-\log |t+3|]+C \\
& =\frac{1}{2}\left[\log \left|\frac{t+1}{t+3}\right|\right]+C \\
& =\frac{1}{2} \log \left[\frac{x^{2}+1}{x^{2}+3}\right]+C
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{1}{e^{x}-1} \\
\int \frac{1}{e^{x}-1} d x=\int \frac{1}{t} \times \frac{d t}{t-1}=\int \frac{d t}{t(t-1)} \\
\\
=\int \frac{t-(t-1)}{t(t-1)} d t \\
\\
=\int\left(\frac{1}{t-1}-\frac{1}{t}\right) d t \\
\\
\\
=\left[\int \frac{1}{t-1} d t-\int \frac{1}{t} d t\right] \\
\\
\\
e^{x} d x=d t \Rightarrow d x=\frac{d t}{t}
\end{array} \\
& \\
& =[\log |t-1|-\log |t|]+C \\
& \\
&
\end{aligned}
$$

EXERCISE 7.5 - Q. NO: $4,5,6,8,10,11,15$, 17

INHEGRATS

 MODUIE - 7

Integration by Parts

Integration by Parts is a special method of integration that is often useful when two functions are multiplied together .
let us see the rule:

$$
\int u v d x=u \int v d x-\int u^{\prime}\left(\int v d x\right) d x
$$

- \mathbf{u} is the first function $\mathbf{u}(\mathrm{x})$
- \mathbf{v} is the second function $\mathbf{v}(\mathrm{x})$
- \mathbf{u}^{\prime} is the derivative of the function $\mathbf{u}(\mathrm{x})$

As a diagram:

$$
u \int v d x-\int u^{\prime}\left(\int v d x\right) d x
$$

The formula can be stated as:
"The integral of the $=($ first function $) x$ (integral of the second function) $=$ [Integral of (derivative of first function) \times (integral of the second function)] ${ }^{3 \prime}$

Where Did "Integration by Parts" Come From?

It is based on the Product Rule for Derivatives:

$$
(f(x) \cdot g(x))^{\prime}=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x)
$$

Integrate both sides and rearrange:

$$
\begin{aligned}
& \quad \int(f(x) \cdot g(x))^{\prime} d x=\int f(x) \cdot g^{\prime}(x) d x+\int g(x) \cdot f^{\prime}(x) d x \\
& f(x) \cdot g(x)=\int f(x) \cdot g^{\prime}(x) d x+\int g(x) \cdot f^{\prime}(x) d x \\
& \int f(x) \cdot g^{\prime}(x) d x=f(x) \cdot g(x)-\int g(x) \cdot f^{\prime}(x) d x \\
& \text { Let } f(x)=u \text { and } g^{\prime}(x)=v \text {. Then, } f^{\prime}(x)=u^{\prime} \text { and } g(x)=\int v d x
\end{aligned}
$$

$$
\int u v d x=u \int v d x-\int u^{\prime}\left(\int v d x\right) d x
$$

Let's look at an example:

What is $\int x \cos x d x$?
First choose which functions for u and $v \rightarrow \boldsymbol{u}=\boldsymbol{x}$ and $\boldsymbol{v}=\boldsymbol{\operatorname { c o s }} \boldsymbol{x}$.
Now it is in the format $\int u \boldsymbol{u} \boldsymbol{v} d \boldsymbol{x}$, so we can proceed:
Differentiate $u: u^{\prime}=\frac{d}{d x}(x)=1$
Integrate $v: \int v d x=\int \cos x d x=\sin x$
Simplify and solve :
$x \sin x-\int \sin x d x$

$x \sin x+\cos x+C$

DOES INTERCHANGING OF U AND V IMAKES A DIFFERENCE :

- What is $\int e^{x} x d x$?

Choose u and $v \rightarrow \boldsymbol{u}=\boldsymbol{e}^{\boldsymbol{x}}$

$$
v=x
$$

Differentiate $u: u^{\prime}=\frac{d}{d x}\left(e^{x}\right)=e^{x}$
Integrate $v: \int v d x=\int x d x=\frac{x^{2}}{2}$

Next step will yield $\int e^{x} \frac{x^{3}}{3} d x$ and every subsequent step will keep on getting higher powers of x and hence integration will never terminate.

Maybe we could choose u and v differently

Choose $u=x$ and $v=e^{x}$
Differentiate $u: u^{\prime}=\frac{d}{d x}(x)=1$
Integrate $v: \int v d x=\int e^{x} d x=e^{x}$

By interchanging the choice of u and v the last integration becomes much simpler

Moral \longrightarrow Choose u and v carefully!!!

Choose u that gets simpler when you differentiate it and v that doesn't get complicated when you integrate it.

The chart given below illustrates the preference order generally adopted for the selection of the first function:

- Inverse Trigonomteric Function
- Logarithmic Functions
- Algebraic Functions
- Trigonometric Functions
- Exponential Functions
- I: Inverse trigonometric functions such as $\sin ^{-1}(x), \cos ^{-1}(x), \tan ^{-1}(x)$
- L: Logarithmic functions such as $\log (x)$
- A: Algebraic functions such as x^{2}, x^{3}
- T: Trigonometric functions such as $\sin (x), \cos (x), \tan (x)$
- E: Exponential functions such as $e^{x}, 3^{x}$

Ex 7.6, 8

 $x \tan ^{-1} x$$$
\begin{aligned}
& \int x \tan ^{-1} x d x \\
& \downarrow \text { Algebraic } \\
& \text { Algebraic Inverse } \\
& \int x \tan ^{-1} x d x=\int\left(\tan ^{-1} x\right) x d x \\
& \int \mathrm{uv} d x=\mathrm{u} \int \mathrm{v} d x-\int\left(\mathrm{u}^{\prime} \int \mathrm{v} d x\right) d x \\
& \text { Putting } \mathrm{u}=\tan ^{-1} x \text { and } \mathrm{v}=x \\
& =\tan ^{-1} x \int x d x-\int\left(\frac{d\left(\tan ^{-1} x\right)}{d x} \int x \cdot d x\right) d x \\
& =\tan ^{-1} x \cdot \frac{x^{2}}{2}-\int \frac{1}{1+x^{2}} \cdot \frac{x^{2}}{2} \cdot d x \\
& =\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2} \int \frac{x^{2}}{x^{2}+1} d x \\
& =\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2} \int \frac{x^{2}+1-1}{x^{2}+1} d x \\
& =\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2}\left[\int \frac{x^{2}+1}{x^{2}+1} d x-\int \frac{d x}{x^{2}+1}\right] \\
& =\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2}\left[\int 1 d x-\int \frac{d x}{x^{2}+1}\right] \\
& =\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2} x+\frac{1}{2} \times \frac{1}{1} \tan ^{-1} \frac{x}{1}+C \\
& \text { Using } \\
& \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C
\end{aligned}
$$

Example 18
Find $\int \log x d x$
Here, we are unable to guess a function whose derivative is log x
$\int \log x d x$
$=\int(\log x) \cdot 1 d x$
Hence, we take $\log x$ as the first function and constant function 1 as the second function.

Using by parts

$$
\mathrm{I}^{\text {st }} \text { function } \mathrm{u}=\log x \& \mathrm{II}^{\text {nd }} \text { function } \mathrm{v}=1
$$

We know that
$\int \mathrm{uv} d x=\mathrm{u} \int \mathrm{v} d x-\int\left(\mathrm{u}^{\prime} \int \mathrm{v} d x\right) d x$
$\int(\log x) \cdot 1 d x=\log x \int 1 \cdot d x-\int\left(\frac{d(\log x)}{d x} \int 1 . d x\right) d x$
$=(\log x) x-\int \frac{1}{x} \cdot x \cdot d x$
$=x \log x-\int 1 \cdot d x$
$=x \log x-x+C$

Example 20 : Find $\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$
Method-1 (Directly use product rule)
Method -2 (Substitution and then by parts)

$$
\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\sin ^{\downarrow} \begin{gathered}
\text { Inverse }
\end{gathered} \frac{x}{\sqrt{1-x^{2}}}
$$

$$
\text { To find } \int \frac{x d x}{\sqrt{1-x^{2}}}
$$

$$
\text { Let } \quad 1-x^{2}=t
$$

Then, $-2 \boldsymbol{x} d x=d t$

$$
\int \frac{x d x}{\sqrt{1-x^{2}}}=-\frac{1}{2} \int \frac{d t}{\sqrt{t}}=-\sqrt{t}=-\sqrt{1-x^{2}}
$$

Hence,
$\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$
$=\sin ^{-1} x\left(-\sqrt{1-x^{2}}\right)-\int \frac{1}{\sqrt{1-x^{2}}}\left(-\sqrt{1-x^{2}}\right) d x$
$=-\sqrt{1-x^{2}} \sin ^{-1} x+x+C$
$=x-\sqrt{1-x^{2}} \sin ^{-1} x+C$

$$
\begin{aligned}
& \text { If } \sin ^{-1} x=\mathrm{t} \Rightarrow \mathrm{x}=\operatorname{sint} \\
& \text { then } \frac{d x}{\sqrt{1-x^{2}}}=d t
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\int(x)\left(\sin ^{-1} x\right) \frac{d x}{\sqrt{1-x^{2}}} \\
& =\int(\sin \mathrm{t}) \mathrm{td} \mathrm{t} \\
& =\mathrm{t}_{1}(-\cos \mathrm{t})-\int 1_{1}(-\cos \mathrm{t}) \mathrm{dt} \\
& =\mathrm{t}_{\mathrm{I}}(-\cos \mathrm{t})+\sin t+\mathrm{c} \\
& =\sin ^{-1} x\left(-\sqrt{1-x^{2}}\right)+\mathrm{x}+\mathrm{c} \\
& =x-\sqrt{1-x^{2}} \sin ^{-1} x+c
\end{aligned}
$$

$$
x(\log x)^{2}
$$

$\therefore \int x(\log x)^{2} \cdot d x=\int(\log x)^{2} x . d x$

$$
\begin{align*}
& =(\log x)^{2} \int x \cdot d x-\int\left(\frac{d(\log x)^{2}}{d x} \int x \cdot d x\right) d x \\
& =(\log x)^{2} \cdot \frac{x^{2}}{2}-\int\left(2(\log x) \frac{1}{x} \int x \cdot d x\right) d x \\
& =\frac{x^{2}}{2}(\log x)^{2}-2 \int \frac{\log x}{x} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2}}{2}(\log x)^{2}-\underbrace{\int x \log x d x}_{\mathbf{I}_{1}} \quad \ldots(1) \tag{1}
\end{align*}
$$

$\int x \log x d x=\int(\log x) x d x$

$$
\begin{aligned}
& =\log x \int x d x-\int\left(\frac{d(\log x)}{d x} \int x \cdot d x\right) d x \\
& =\log x\left(\frac{x^{2}}{2}\right)-\int \frac{1}{x} \cdot \frac{x^{2}}{2} \cdot d x \\
& =\frac{x^{2}}{2} \log x-\frac{1}{2} \int x \cdot d x \\
& =\frac{x^{2}}{2} \log x-\frac{1}{2} \cdot \frac{x^{2}}{2}+C \\
& =\frac{x^{2}}{2} \log x-\frac{x^{2}}{4}+C
\end{aligned}
$$

Putting value of I_{1} in (1),

$$
\begin{aligned}
\frac{x^{2}}{2}(\log x)^{2}-\int \boldsymbol{x} \cdot \boldsymbol{\operatorname { l o g } \boldsymbol { x } \boldsymbol { d } \boldsymbol { x }} & =\frac{x^{2}}{2}(\log x)^{2}-\left(\frac{x^{2}(\log x)}{2}-\frac{x^{2}}{4}+C\right) \\
& =\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}(\log x)}{2}+\frac{x^{2}}{4}-C \\
& =\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}(\log x)}{2}+\frac{x^{2}}{4}+C
\end{aligned}
$$

Integral of the type : $\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x$

Let

$$
\begin{aligned}
& \mathrm{I}=\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=\int e^{x} f(x) d x \\
&=\int e^{x} f^{\prime}(x) d x \\
&=\quad I_{1} \quad+\int e^{x} f^{\prime}(x) d x \\
&=\left[f(x) e^{x}-\int f^{\prime}(x) e^{x} d x\right]+\int e^{x} f^{\prime}(x) d x
\end{aligned}
$$

$$
\therefore \int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=\int e^{x} f(x) d x+C
$$

Ex 7.6, 18

Integrate the function: $e^{x}\left(\frac{1+\sin x}{1+\cos x}\right)$
Simplifying function $e^{x}\left(\frac{1+\sin x}{1+\cos x}\right)=e^{x}\left(\left(\frac{1}{1+\cos x}\right)+\left(\frac{\sin x}{1+\cos x}\right)\right)$

$$
=e^{x}\left(\left(\frac{1}{2 \cos ^{2} \frac{x}{2}}\right)+\left(\frac{2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right)}{2 \cos ^{2}\left(\frac{x}{2}\right)}\right)\right)
$$

$$
=e^{x}\left(\frac{1}{2} \cdot \sec ^{2} \frac{x}{2}+\tan \left(\frac{x}{2}\right)\right)
$$

$$
=e^{x}\left(\tan \left(\frac{x}{2}\right)+\frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right)\right)
$$

It is of the form

$$
\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=e^{x} f(x)+C
$$

Thus,
Our Integration becomes $\int e^{x}\left(\frac{1+\sin x}{1+\cos x}\right) d x=\boldsymbol{e}^{x} \tan \frac{x}{2}+\boldsymbol{C}$

Example 22
Find $\int \frac{\left(x^{2}+1\right) e^{x}}{(x+1)^{2}} d x$
$\int \frac{x^{2}+1}{(x+1)^{2}} \cdot e^{x} d x=\int \frac{x^{2}+1+1-1}{(x+1)^{2}} \cdot e^{x} \cdot d x \quad$ [Adding and subtracting 1 in numerator]

$$
=\int\left[\frac{x^{2}-1}{(x+1)^{2}}+\frac{2}{(x+1)^{2}}\right] e^{x} d x
$$

$$
=\int e^{x}\left[\frac{x-1}{x+1}+\frac{2}{(x+1)^{2}}\right] d x
$$

Thus,

$$
\begin{aligned}
\int \frac{x^{2}+1}{(x+1)^{2}} \cdot e^{x} & =\int e^{x}\left[\frac{x-1}{x+1}+\frac{2}{(x+1)^{2}}\right] d x \\
& =e^{x}\left[\frac{x-1}{x+1}\right]+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { It is of form } \\
& \int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=e^{x} f(x)+C \\
& \text { Where } f(x)=\frac{x-1}{x+1} \\
& \qquad f^{\prime}(x)=\frac{d}{d x}\left[\frac{x-1}{x+1}\right]=\frac{2}{(x+1)^{2}}
\end{aligned}
$$

Some more special types of standard Integrals.

(i) $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
(ii) $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
(iii) $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$

The above integrals can be proved by taking the constant function 1 as the second function and integrating by parts.

Example 23

Find $\int \sqrt{x^{2}+2 x+5} d x$
$\int \sqrt{x^{2}+2 x+5} d x=\int \sqrt{x^{2}+2 x+1+4} d x$

$$
=\int \sqrt{(x+1)^{2}+4} d x
$$

It is of the form
$\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$

$$
\begin{aligned}
& =\frac{x+1}{2} \sqrt{(x+1)^{2}+4}+2 \log \left|x+1+\sqrt{(x+1)^{2}+4}\right|+\mathrm{C} \\
& =\frac{1}{2}(\mathbf{x}+1) \sqrt{x^{2}+2 x+5}+2 \log \left|x+1+\sqrt{x^{2}+2 x+5}\right|+C
\end{aligned}
$$

Example 24

Find $\int \sqrt{3-2 x-x^{2}} d x$
$\int \sqrt{3-2 x-x^{2}} d x=\int \sqrt{3-\left(2 x+x^{2}\right)} d x$

$$
\begin{aligned}
& =\int \sqrt{4-\left(x^{2}+2 x+1^{2}\right)} d x \text { (Adding and Subtracting 1) } \\
& =\int \sqrt{2^{2}-(x+1)^{2}} d x \quad \begin{array}{l}
\text { It is of the form } \\
\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x} \\
=\frac{1}{2}(x+1) \sqrt{2^{2}-(x+1)^{2}}+\frac{2^{2}}{2} \sin ^{-1} \frac{(x+1)}{2}+C \\
=\frac{1}{2}(x+1) \sqrt{3-2 x-x^{2}}+2 \sin ^{-1} \frac{(x+1)}{2}+C
\end{array}
\end{aligned}
$$

HOMIE ASSTGNMIENT......

-COMIPLETE EXX - 7.6 AND EX - 7.7
M

