

Indefinite Integral

Integration as the Inverse Process of Differentiation

k dx = kx + C $x^{n} dx = \frac{x^{n+1}}{n+1} + C$

INTEGRALS – MODULE 4

Substitution Method for Some Important Integrals of Trigonometric Functions

• $\int \tan x \, dx = \log |\sec x| + C$

We know that $\tan x = \sin x / \cos x$. Therefore, $\int \tan x \, dx = \int (\sin x / \cos x) \, dx$. Now, let's substitute $\cos x = t$, so that $\sin x \, dx = -dt$. Therefore, $\int \tan x \, dx = -\int (dt / t) = -\log |\cos x| + C$ $Or, \int \tan x \, dx = \log |\sec x| + C$ $= \log |\cos x|^{-1}$ $= \log \left| \frac{1}{\cos x} \right|$

• $\int \sec x \, dx = \log |\sec x + \tan x| + C$

On multiplying both the numerator and denominator by (sec x + tan x), we have $\int \sec x \, dx = \int \{\sec x (\sec x + \tan x) \, dx\} / (\sec x + \tan x)$ Now, let's substitute (sec x + tan x) = t, so that sec x tan x + sec²x = dt That is, sec x (sec x + tan x) dx = dt.

Therefore, $\int \sec x \, dx = \int (dt / t) = \log |t| + C = \log |\sec x + \tan x| + C$

Similarly, we can prove

 $\int \cot x \, dx = \log |\sin x| + C$

Similarly, we can prove

 $\int \operatorname{cosec} x \, dx = \log \left| \operatorname{cosec} x - \cot x \right| + C$

LET'S RECALL.....TRIGONO TITIES AND FORMULAE Angle sum and difference identities Sum Identities (Sum to Product Identities) $\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$ sin(x + y) = sin x cos y + cos x sin ysin(x - y) = sin x cos y - cos x sin y $\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$ $\cos(x + y) = \cos x \cos y - \sin x \sin y$ $\cos(x - y) = \cos x \cos y + \sin x \sin y$ $\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$ $\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$ $\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$ $\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$

Triple Angle Formulas

 $\sin 3x = 3 \sin x - 4 \sin^3 x$

$$\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

Product Identities (Product to Sum Identities)

 $2 \cos x \cos y = \cos (x + y) + \cos(x - y)$

 $-2 \operatorname{sinx} \operatorname{siny} = \cos(x + y) - \cos(x - y)$

 $2 \operatorname{sinx} \operatorname{cosy} = \operatorname{sin} (x + y) + \operatorname{sin} (x - y)$

 $2 \cos x \sin y = \sin (x + y) - \sin(x - y)$

Half Angle Identities

$$\sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2} = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$
$$\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} = 1 - 2\sin^2 \frac{x}{2} = 2\cos^2 \frac{x}{2} - 1 = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$
$$\tan x = \frac{2 \tan \frac{x}{2}}{1 - \tan^2 \frac{x}{2}}$$
$$\sin \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}}$$
$$\cos \frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}}$$

EXAMPLE 1
EX 7.3, 1
Find the integral of
$$\sin^2 (2x + 5)$$

 $\int \sin^2 (2x + 5) \, dx = \int \frac{1 - \cos 2(2x + 5)}{2} \, dx$
 $= \frac{1}{2} \int 1 - \cos(4x + 10) \, dx$
 $= \frac{1}{2} \left[\int 1 \, dx - \int \cos(4x + 10) \, dx \right]$
 $= \frac{1}{2} \left[x - \frac{\sin(4x + 10)}{4} + C \right]$
 $= \frac{x}{2} - \frac{1}{8} \sin(4x + 10) + C$

Integrate the function - cos 2x cos 4x cos 6x

We know that

 $2\cos A\cos B = [\cos(A+B) + \cos(A-B)]$

Replace A by 2x & B by 4x

 $2\cos 2x\cos 4x = \cos(2x + 4x) + \cos(2x - 4x)$ $2\cos 2x\cos 4x = \cos 6x + \cos 2x \quad (\because \cos(-x) = \cos x)$ $\cos 2x\cos 4x = \frac{1}{2}(\cos 6x + \cos 2x)$

 $\int (\cos 2x \cos 4x \cos 6x) dx$

 $= \int \left(\frac{1}{2}(\cos 6x + \cos 2x)\cos 6x\right) dx$ $= \frac{1}{2} \left[\int (\cos 6x)^2 dx + \int \cos 2x \cdot \cos 6x dx\right]$ Solving both these integrals separately

$$\int (\cos^2 6x)$$

We know that
$$\cos^2 \theta = \frac{\cos 2\theta + 1}{2}$$

Replace θ by $6x$
 $\cos^2 6x = \frac{\cos 12x + 1}{2}$
$$\int \cos^2 6x \, dx$$

 $= \frac{1}{2} \int (\cos 12x + 1) \, dx$

$$\int \cos 2x \cos 6x \, dx$$

We know that

$$2 \cos A \cos B = \cos (A + B) + \cos(A - B)$$

$$\cos A \cos B = \frac{1}{2} [\cos (A + B) + \cos(A - B)$$

We place A by 2x & B by 6x

$$\cos 2x \cos 6x$$

$$= \frac{1}{2} [\cos(2x + 6x) + \cos(2x - 6x)]$$

$$= \frac{1}{2} [\cos 8x + \cos 4x] \, dx$$

$$\int \cos 2x \cos 6x \, dx$$

$$= \frac{1}{2} \int (\cos 8x + \cos 4x) \, dx$$

 $\int (\cos 2x \cos 4x \cos 6x) \, dx$

 $= \frac{1}{2} \Big[\frac{1}{2} \int (\cos 12x + 1) \, dx + \frac{1}{2} \int (\cos 8x + \cos 4x) \, dx \Big]$ $= \frac{1}{4} \Big[\int \cos 12x \, dx + \int 1 \, dx + \int \cos 8x \, dx + \int \cos 4x \, dx \Big]$ $= \frac{1}{4} \Big[\frac{\sin 12x}{12} + x + \frac{\sin 8x}{8} + \frac{\sin 4x}{4} \Big] + C$

Integrate $\frac{\cos x}{1 + \cos x}$

$$\int \frac{\cos x}{1 + \cos x} \, dx$$

$$= \int \left(\frac{\cos x + 1 - 1}{1 + \cos x}\right) dx$$

$$= \int \left(\frac{1+\cos x - 1}{1+\cos x}\right) dx$$

$$= \int \left(\frac{1 + \cos x}{1 + \cos x} - \frac{1}{1 + \cos x} \right) dx$$

$$= \int 1 - \frac{1}{1 + \cos x} dx$$

$$= \int 1 \, dx - \int \frac{1}{1 + \cos x} \, dx$$

$$= \int 1 dx - \int \frac{1}{2 \cos^2 \frac{x}{2}} dx$$

$$= \int 1 dx - \int \frac{1}{2} \sec^2 \frac{x}{2} dx$$

$$= \int 1 dx - \frac{1}{2} \int \sec^2 \frac{x}{2} dx$$

$$= x - \frac{1}{2} \frac{\tan \frac{x}{2}}{\frac{1}{2}} + C$$

$$\int \sec^2 (ax + b) dx = \frac{\tan(ax + b)}{a} + C$$

$$= x - \frac{2}{2} \tan \frac{x}{2} + C$$

$$= x - \tan \frac{x}{2} + C$$

Integrate the function
$$\frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha}$$
$$\int \frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha} dx$$
$$= \int \frac{(2\cos^2 x - 1) - (2\cos^2 \alpha - 1)}{\cos x - \cos \alpha} dx (\cos 2\theta = 2\cos^2 \theta - 1)$$
$$= \int \frac{2\cos^2 x - 1 - 2\cos^2 \alpha + 1}{\cos x - \cos \alpha} dx$$
$$= \int \frac{2\cos^2 x - 2\cos^2 \alpha + 1 - 1}{\cos x - \cos \alpha} dx$$
$$= \int \frac{2(\cos^2 x - \cos^2 \alpha)}{\cos x - \cos \alpha} dx$$

$$= 2 \int \frac{(\cos x - \cos \alpha) (\cos x + \cos \alpha)}{(\cos x - \cos \alpha)} dx$$

= $2 \int (\cos x + \cos \alpha) dx$
= $2 (\int \cos x dx + \int \cos \alpha dx)$
= $2 (\int \cos x dx + \cos \alpha \int 1 dx)$
= $2 (\sin x + x \cos \alpha) + C$

$$\int \tan^2 x \cdot \sec^2 x \, dx$$
Let $\tan x = t$

$$\sec^2 x = \frac{dt}{dx}$$

$$\sec^2 x \, dx = dt$$
Now,
$$\int \tan^2 x \cdot \sec^2 x \cdot dx$$

$$= \int t^2 \cdot dt = \frac{t^3}{3} + C$$

$$= \frac{\tan^3 x}{3} + C_1$$
Now,
$$\int \tan^4 x \, dx = \int \tan^2 x \cdot \sec^2 x \, dx - \int \tan^2 x \, dx$$

$$= \frac{\tan^3 x}{3} + C_1 - (\tan x - x + C_2)$$

$$= \frac{\tan^3 x}{3} - \tan x + x + C \quad (Where \ C = C_1 - C_2)$$

Integrate the function $\frac{\cos 2x}{(\cos x + \sin x)^2}$

 $\int \frac{\cos 2x}{(\cos x + \sin x)^2}$

$$= \int \frac{\cos^2 x - \sin^2 x}{(\cos x + \sin x)^2} dx \qquad (\cos 2\theta = \cos^2 \theta - \sin^2 \theta)$$

$$= \int \frac{(\cos x - \sin x)(\cos x + \sin x)}{(\cos x + \sin x)^2} dx$$

$$= \int \frac{\cos x - \sin x}{\cos x + \sin x} \, dx$$

Let $\cos x + \sin x = t$ Differentiating w.r.t. x $-\sin x + \cos x = \frac{dt}{dx}$ $(\cos x - \sin x)dx = dt$ Thus, our equation becomes $=\int \frac{1}{t} dt$ $= \log|t| + C$ = log |cos x + sin x| + C

$$\frac{1}{\cos(x-a)\cos(x-b)}$$

$$\int \frac{1}{\cos(x-a)\cos(x-b)}$$

Multiply & Divide by sin(a - b)

$$= \int \frac{\sin(a-b)}{\sin(a-b)} \times \frac{1}{\cos(x-a)\cos(x-b)} dx$$
$$= \frac{1}{\sin(a-b)} \int \frac{\sin(a-b)}{\cos(x-a)\cos(x-b)} dx$$
$$= \frac{1}{\sin(a-b)} \int \frac{\sin(a-b+x-x)}{\cos(x-a)\cos(x-b)} dx$$
$$= \frac{1}{\sin(a-b)} \int \frac{\sin((x-b)+(a-x))}{\cos(x-a)\cos(x-b)} dx$$

$$= \frac{1}{\sin(a-b)} \int \frac{\sin((x-b) - (x-a))}{\cos(x-a)\cos(x-b)} dx$$

$$Using \sin(A-B) = \sin A \cos B - \cos A \sin B$$

$$Replace A by (x-b) & B by (x-b)$$

$$\sin((x-b) - (x-a)) = \sin(x-b)\cos(x-a) - \cos(x-b)\sin(x-a)$$

$$= \frac{1}{\sin(a-b)} \int \frac{\sin(x-b)\cos(x-a) - \cos(x-b)\sin(x-a)}{\cos(x-a)\cos(x-b)} dx$$

$$= \frac{1}{\sin(a-b)} \int \left(\frac{\sin(x-b)\cos(x-a) - \cos(x-b)\sin(x-a)}{\cos(x-a)\cos(x-b)} - \frac{\cos(x-b)\sin(x-a)}{\cos(x-a)\cos(x-b)} dx\right)$$

$$= \frac{1}{\sin(a-b)} \left[\int \left(\frac{\sin(x-b)}{\cos(x-b)} - \frac{\sin(x-a)}{\cos(x-a)}\right) dx \right]$$

$$= \frac{1}{\sin(a-b)} \left[\int \tan(x-b) - \tan(x-a) dx \right]$$

Using
$$\int \tan x \, dx = -\log|\cos x| + C$$

$$= \frac{1}{\sin(a-b)} [-\log|\cos(x-b)| + \log|\cos(x-a)|] + C$$

$$= \frac{1}{\sin(a-b)} [\log|\cos(x-a)| - \log|\cos(x-b)|] + C$$

$$=\frac{1}{\sin(a-b)}\log\left|\frac{\cos(x-a)}{\cos(x-b)}\right|+C$$

INTEGRAIS NODULE - 5

f(x) dx Integration Integrand Variable of symbol Integration

INTEGRATION OF SOME PARTICULAR

TITATOMIONIC

Integrals of some special functions

1.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c$$

2.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$$

3.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$$

4.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^1 \frac{x}{a} + c$$

5.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log |x + \sqrt{x^2 - a^2}| + C$$

6.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log |x + \sqrt{x^2 + a^2}| + C$$

Ex 7.4, 1

$$\frac{3x^2}{x^6 + 1}$$

$$\int \frac{3x^2}{x^6 + 1} dx = \int \frac{3x^2}{(x^3)^2 + 1} dx$$
Let $x^3 = t$
Diff both sides w.r.t.x

$$3x^2 dx = dt$$

$$\therefore \int \frac{3x^2}{x^6 + 1} dx = \int \frac{dt}{t^2 + 1}$$

$$= \int \frac{dt}{t^2 + (1)^2}$$

$$= \tan^{-1}(t) + C$$

$$= \tan^{-1}(x^3) + C$$

 $=\frac{1}{a}\tan^{-1}\frac{x}{a}+C$

Ex 7.4, 2

$$\frac{1}{\sqrt{1+4x^2}}$$

$$\int \frac{1}{\sqrt{1+4x^2}} dx = \int \frac{1}{\sqrt{4(\frac{1}{4}+x^2)}} \cdot dx \quad (Taking 4 common)$$

$$= \frac{1}{2} \int \frac{1}{\sqrt{x^2 + \frac{1}{4}}} \cdot dx$$

$$= \frac{1}{2} \int \frac{1}{\sqrt{x^2 + (\frac{1}{2})^2}} \cdot dx \quad [t \text{ is of form}]$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \log|x + \sqrt{x^2 + a^2}| + C$$

$$= \frac{1}{2} \left[\log \left| x + \sqrt{x^2 + \frac{1}{4}} \right| \right] + C$$

$$= \frac{1}{2} \log \left| x + \sqrt{\frac{4x^2 + 1}{4}} \right| + C$$

$$= \frac{1}{2} \log \left| 2x + \sqrt{1 + 4x^2} \right| + C$$

Ex 7.4, 4 $\frac{1}{\sqrt{9-25x^2}}$ $\int \frac{1}{\sqrt{9-25x^2}} \, dx$ $=\int \frac{1}{\sqrt{25\left(\frac{9}{25}-x^2\right)}} dx$ (Taking 25 common) $= \frac{1}{5} \int \frac{1}{\sqrt{\frac{9}{25} - x^2}} dx$ $= \frac{1}{5} \left[\sin^{-1} \frac{x}{\frac{3}{5}} + C \right]$ It is of form $\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\frac{x}{a} + C$ $=\frac{1}{5}sin^{-1}\frac{5x}{3}+C$

Ex 7.4, 6

$$\frac{x^{2}}{1-x^{6}}$$

$$\int \frac{x^{2}}{1-x^{6}} dx = \int \frac{x^{2}}{1-(x^{3})^{2}} dx$$
Now, Try this.....
Answer $= \frac{1}{6} \log \left| \frac{1+x^{3}}{1-x^{3}} \right| + C$

Ex 7.4, 9

Let $\tan x = t$

Diff both sides w.r.t. x $\sec^{2} x \ dx = dt$ $\int \frac{dx}{\sqrt{x^{2} + a^{2}}} = \log|x + \sqrt{x^{2} + a^{2}}| + C$ $\therefore \int \frac{\sec^{2} x}{\sqrt{\tan^{2} x + 4}} = \int \frac{1}{\sqrt{t^{2} + (2)^{2}}} \ dt$ $= \log|t + \sqrt{t^{2} + (2)^{2}}| + C$ $= \log|\tan x + \sqrt{\tan^{2} x + 4}| + C$

SOLVE THE FOLLOWING : EX – 7.4 Q.NO: 3,5,7,8.

IMPORTANT FORMS TO BE CONVERTED INTO SPECIAL INTEGRALS

(i) Form I
$$\int \frac{1}{ax^2 + bx + c} dx$$
 or $\frac{1}{\sqrt{ax^2 + bx + c}} dx$

Express $ax^2 + bx + c$ as sum or difference of two squares *i.e.*,

$$ax^{2} + bx + c = a\left[x^{2} + \frac{b}{a}x + \frac{c}{a}\right] = a\left[\left(x + \frac{b}{2a}\right)^{2} + \left(\frac{c}{a} - \frac{b^{2}}{4a^{2}}\right)\right]$$

We find the integral reduced to the form $\frac{1}{a}\int \frac{dt}{t^2 + k^2}$ and hence evaluate.

Example: Find
$$\int \frac{dx}{9x^2+6x+5}$$
 $(a+b)^2$
 $9x^2 + 6x + 5 = 9\left[x^2 + \frac{6}{9}x + \frac{5}{9}\right] = 9\left[x^2 + 2.x.\frac{1}{3} + \left(\frac{1}{3}\right)^2 + \frac{5}{9} - \left(\frac{1}{3}\right)^2\right]$
 $= 9\left[\left(x + \frac{1}{3}\right)^2 + \left(\frac{2}{3}\right)^2\right]$
 $\therefore \int \frac{dx}{9x^2+6x+5} = \frac{1}{9} \times \frac{1}{2/3} \tan^{-1}\left(\frac{x+1/3}{2/3}\right) + C = \frac{1}{6} \tan^{-1}\left(\frac{3x+1}{2}\right) + C$
 $Alternate method
Since $9x^2$ is a perfect square so can
be written as $(3x)^2$
 $9x^2 + 6x + 5 = (3x)^2 + 2(3x)(1) + 1$
 $= (3x + 1)^2 + 2^2$ $+ 4$
 $\therefore \int \frac{dx}{9x^2+6x+5} = \frac{1}{9} \times \frac{1}{2/3} \tan^{-1}\left(\frac{x+1/3}{2/3}\right) + C = \frac{1}{6} \tan^{-1}\left(\frac{3x+1}{2}\right) + C$
 $= \frac{1}{2x3} \tan^{-1}\left(\frac{3x+1}{2}\right) + C$$

(ii) Form II =
$$\int \frac{px+q}{ax^2+bx+c} dx \text{ or } \int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$

Put $px+q = A \frac{d}{dx} (ax^2+bx+c) + B$

The numerator is split into two parts, the first contains A (the differentiation of the quadratic) and the other is a constant B (free of x). Now A and B can be found out by equating the coefficient of each term of the above expression on LHS and RHS.

Example: Find
$$\int \frac{5x-2}{3x^2+2x+1} dx$$

Write $5x - 2 = A(6x + 2) + B$
Comparing the coefficients of x ,
we get $5 = 6A \Rightarrow A = \frac{5}{6}$
Comparing the constants,
we get $-2 = 2A + B$
 $\Rightarrow -2 = 2\left(\frac{5}{6}\right) + B \Rightarrow B = -\frac{11}{3}$
 $\therefore 5x - 2 = \frac{5}{6}(6x + 2) - \frac{11}{2}$
Now, $\int \frac{5x-2}{3x^2+2x+1} dx = \int \frac{5}{6}(\frac{6(x+2)-11}{3}) dx$
 $= \frac{5}{6}\int \frac{6x+2}{3x^2+2x+1} dx - \frac{11}{3}\int \frac{dx}{3x^2+2x+1}$
Bcoz numerator is difform of denominator so
use substitution
method to integrate
Now, $\int \frac{5x-2}{3x^2+2x+1} dx = \int \frac{5}{6}(\frac{6(x+2)-11}{3}) dx$

It is of form
$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{9x-4x^2}}$$
 equals

A.
$$\frac{1}{9}\sin^{-1}\left(\frac{9x-8}{8}\right) + C$$

B. $\frac{1}{9}\sin^{-1}\left(\frac{8x-9}{9}\right) + C$
C. $\frac{1}{3}\sin^{-1}\left(\frac{9x-8}{8}\right) + C$
D. $\frac{1}{2}\sin^{-1}\left(\frac{9x-8}{8}\right) + C$

$$\int \frac{dx}{\sqrt{9x - 4x^2}} = \int \frac{dx}{\sqrt{-4\left(x^2 - \frac{9}{4}x\right)}} \quad \text{(Taking -4 common)}$$
$$= \int \frac{dx}{\sqrt{-4\left(x^2 - 2(x)\left(\frac{9}{8}\right)\right)}}$$

$$= \int \frac{dx}{\sqrt{-4\left[x^2 - 2(x)\left(\frac{9}{8}\right) + \left(\frac{9}{8}\right)^2 - \left(\frac{9}{8}\right)^2\right]}}$$

Ex 7.4, 19

Integrate
$$\frac{6x+7}{\sqrt{(x-5)(x-4)}}$$
$$\int \frac{6x+7}{\sqrt{(x-5)(x-4)}} \cdot dx$$
$$= \int \frac{6x+7}{\sqrt{x^2-9x+20}} \cdot dx$$
$$6x+7 = A(2x-9) + B$$
Comparing coefficients of x,
2A = 6 \Rightarrow A = 3
Comparing constants,
-9A + B = 7 \Rightarrow -9(3)+B = 7 \Rightarrow B =

Rough
$$(x^2 - 9x + 20)' = 2x - 9$$

 $-9A + B = 7 \Rightarrow -9(3) + B = 7 \Rightarrow B = 34$ $\therefore \int \frac{6x + 7}{\sqrt{x^2 - 9x + 20}} dx = 3 \int \frac{2x - 9}{\sqrt{(x^2 - 9x + 20)}} dx + 34 \int \frac{dx}{\sqrt{(x^2 - 9x + 20)}} \dots (1)$

$$I_{1} = 3 \int \frac{2x - 9}{\sqrt{(x^{2} - 9x + 20)}} dx$$
$$= 3 \int \frac{1}{\sqrt{t}} dt = 3 \int (t)^{\frac{-1}{2}} dt$$
$$= 3 \frac{t^{\frac{1}{2}}}{\frac{1}{2}} + C_{1} = 6 t^{\frac{1}{2}} + C_{1}$$
$$I_{1} = 6\sqrt{x^{2} - 9x + 20} + C_{1}$$

$$I_2 = 34 \int \frac{1}{\sqrt{x^2 - 9x + 20}} \, dx$$

$$= 34 \int \frac{1}{\sqrt{x^2 - 2(x)\left(\frac{9}{2}\right) + \left(\frac{9}{2}\right)^2 - \left(\frac{9}{2}\right)^2 + 20}} \ . \ dx$$

$$= 34 \int \frac{1}{\sqrt{\left(x - \frac{9}{2}\right)^2 - \left(\frac{9}{2}\right)^2 + 20}} \, . \, dx$$

$$= 34 \int \frac{1}{\sqrt{\left(x - \frac{9}{2}\right)^2 - \left(\frac{1}{2}\right)^2}} \, dx$$

Let
$$x^2 - 9x + 20 = t$$

 $(2x - 9)dx = dt$

$$= 34 \left[log \left| x - \frac{9}{2} + \sqrt{\left(x - \frac{9}{2} \right)^2 + \left(\frac{1}{2} \right)^2} \right| \right] + C_2$$

$$I_2 = 34 \log \left| x - \frac{9}{2} + \sqrt{x^2 - 9x + 20} \right| + C_2$$

Now, putting values of I_1 and I_2 in eq. 1

$$\int \frac{6x+7}{\sqrt{(x-2)(x-4)}} \, dx$$

= $l_1 + l_2$
= $6\sqrt{x^2 - 9x + 20} + 34 \log \left| x - \frac{9}{2} + \sqrt{x^2 - 9x + 20} \right| + C$

Ex 7.4, 23

Integrate
$$\frac{5x+3}{\sqrt{x^2+4x+10}}$$

$$\int \frac{5x+3}{\sqrt{x^2+4x+10}} dx$$

Rough
$$(x^2 + 4x + 10)' = 2x + 4$$

5x + 3 = A(2x+4) + B

comparing coefficients of x,
$$2A = 5 \implies A = 5/2$$

Comparing constants, $4A + B = 3 \implies 4(5)+B = 3 \implies B = -7$ 2

$$\stackrel{...(1)}{\stackrel{.$$

Now solving,

$$I_{1} = \frac{5}{2} \int \frac{2x+4}{\sqrt{x^{2}+4x+10}} \, dx, \text{ we get}$$
$$= \frac{5}{2} \int \frac{1}{\sqrt{t}} \, dt$$
$$I_{1} = 5 \sqrt{x^{2}+4x+10} + C_{1}$$

Solving I_2

$$I_{2} = \int \frac{7}{\sqrt{x^{2} + 4x + 10}} \cdot dx$$

= $7 \int \frac{1}{\sqrt{(x+2)^{2} + 6}} \cdot dx = 7 \int \frac{1}{\sqrt{(x+2)^{2} + (\sqrt{6})^{2}}} \cdot dx$
 $I_{2} = 7 \log |x+2 + \sqrt{x^{2} + 4x + 10}| + C_{2}$
Putting the values of I_{1} and I_{2} in (1)
 $\int \frac{5x+3}{\sqrt{x^{2} + 4x + 10}} \cdot dx = I_{1} - I_{2}$

$$= 5\sqrt{x^2 + 4x + 10} + C_1 - 7\log|x + 2 + \sqrt{x^2 + 4x + 10}| + C_2$$

$$= 5\sqrt{x^2 + 4x + 10} - 7\log|x + 2 + \sqrt{x^2 + 4x + 10}| + C$$

HOME ASSIGNMENT....

EXERCISE – 7.4 Q. NO : 12, 13, 16, 21, 22.

INTEGRALS

MODULE - 6

510 52

22

Partial Fractions

INTEGRATION BY PARTIAL FRACTIONS

- ♦ We know that a rational function is a ratio of two polynomials $\frac{P(x)}{Q(x)}$, where $Q(x) \neq 0$. If the degree of P(x) is less than the degree of Q(x), then it is a **proper** function, otherwise, it is called **improper**.
- Even if a fraction is improper, it can be reduced to a proper fraction by the long division process.
- So, if \$\frac{P(x)}{Q(x)}\$ is improper, then \$\frac{P(x)}{Q(x)} = T(x) + \frac{R(x)}{Q(x)}\$, where T(x) is a polynomial in x and \$\frac{R(x)}{Q(x)}\$ is a proper rational function.
 To evaluate \$\int \frac{P(x)}{Q(x)} dx\$, where \$\frac{P(x)}{Q(x)}\$ is a proper rational function, it is possible to write the integrand as a sum of simpler rational functions by a method called partial fraction decomposition.

What are Partial Fractions?

We can do *this* directly:

$$\frac{2}{x-2} + \frac{3}{x+1} \longrightarrow \frac{5x-4}{x^2-x-2}$$

... but how do we go in the opposite direction?

That is what we are going to discover:

How to find the "parts" that make the single fraction (the "partial fractions").

Why Do We Want Them?

Because the partial fractions are each simpler.

This can help integrate the more complicated fraction.

Sometimes you may get a factor with an exponent, like $(x-2)^3$...

A

S

E

(111

Because (X+3) has an exponent of 1, it needs one term A

And (x²+3) is a quadratic, so it will need Bx + C:

$$\frac{x^2 + 15}{(x+3)(x^2+3)} = \frac{A}{x+3} + \frac{Bx+6}{x^2+3}$$

The following table indicates the types of simple partial fractions which can be associated with various rational functions:

S.No Form of the Rational Function	Form of the Partial Fraction		
$\frac{px+q}{(x-a)(x-b)}, a \neq b$	$\frac{A}{x-a} + \frac{B}{x-b}$		
$\frac{2px+q}{(x-a)^2}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2}$		
$\frac{px^3 + qx + r}{(x-a)(x-b)(x-c)}$	$\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$		
$\frac{px^2 + qx + r}{(x-a)^2 (x-b)}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$		
$\frac{px^{\mathfrak{B}} + qx + r}{(x-a)(x^2 + bx + c)}$	$\frac{A}{x-a} + \frac{Bx+C}{x^2+bx+c}$		
Where $x^2 + bx + c$ car	not be factorised further		

We can write the integrand as

$$\frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{A}{(x-1)} + \frac{B}{(x-2)} + \frac{C}{(x-3)}$$
$$= \frac{A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2)}{(x-3)(x-3) + C(x-1)(x-2)}$$

By cancelling denominator

$$3x - 1 = A(x - 2)(x - 3) + B(x - 1)(x - 3) + C(x - 1)(x - 2) ...(1)$$
Putting $x = 1$ in (1)
 $2 = A(-1)(-2) + B \times 0 + C \times 0$
 $2 = 2A \implies A = 1$
Similarly putting $x = 2$, in (1), we get $B = -5$
Similarly putting $x = 3$, in (1), we get $C = 4$

(x-1)(x-2)(x-3)

Integrate: 3x - 1

 $\overline{(x-1)(x-2)(x-3)}$

Hence we can write it as

$$\int \frac{3x-1}{(x-1)(x-2)(x-3)} dx = \int \frac{1}{x-1} + \frac{-5}{x-2} + \frac{4}{x-3} dx$$
$$= \int \frac{1}{x-1} dx - 5 \int \frac{1}{x-2} dx + 4 \int \frac{1}{x-3} dx$$
$$= \log|x-1| - 5\log|x-2| + 4\log|x-3| + C$$

EX 7.5, Q.12

Ex 7.5, 13

$$\frac{2}{(1-x)(1+x^2)}$$

We can write the integrand as $\frac{-2}{(x-1)(1+x^2)}$

Let

$$\frac{-2}{(x-1)(1+x^2)} = \frac{A}{(x-1)} + \frac{Bx+C}{(1+x^2)}$$
$$= \frac{A(1+x^2) + (Bx+C)(x-1)}{(x-1)(1+x^2)}$$

By cancelling denominator

$$-2 = A(1 + x^{2}) + (Bx + C)(x - 1) \qquad \dots (1)$$

Putting x = 1, in (1)

$$-2 = A(1 + 1) + (Bx + C) 0$$

 $\therefore A = -1$

Putting x = 0, in (1) -2 = A(1) + C(-1)we get C = 1 Equating coefficient of x^2 on both sides of (1) $0 = A + B \Longrightarrow B = -A \implies B = 1$

So, we can write

$$\int \frac{-2}{(1-x)(1+x^2)} dx = \int \frac{-1}{x-1} dx + \int \frac{x+1}{x^2+1} dx$$
$$= -\int \frac{1}{x-1} dx + \int \frac{x}{x^2+1} dx + \int \frac{1}{x^2+1} dx$$
$$\downarrow$$

In
Solving I₁ = $\int \frac{x}{x^2+1} dx$
Hence $\int \frac{x}{x^2+1} dx = \int \frac{dt}{2(t)} = \frac{1}{2} \log |t| + C_1$
$$= \frac{1}{2} \log |x^2+1| + C_1$$

Therefore

$$\int \frac{2}{(1-x)(1+x^2)} dx = \int \frac{-1}{x-1} dx + \int \frac{x}{x^2+1} dx + \int \frac{1}{x^2+1} dx$$
$$= -\log|x-1| + \frac{1}{2}\log|x^2+1| + \tan^{-1}x + C$$
$$= -\log|x-1| + \frac{1}{2}\log(x^2+1) + \tan^{-1}x + C$$

We can write integrand as

EX 7.5

Q. 16

Integrate

 $\overline{x(x^n+1)}$

$$\frac{1}{x(x^{n}+1)} = \frac{1}{x(x^{n}+1)} \times \frac{x^{n-1}}{x^{n-1}} \text{ (multiply numerator and denominator by } x^{n-1}$$
$$= \frac{x^{n-1}}{x^{n}(x^{n}+1)} \text{ Let } t = x^{n}$$
$$dt = n x^{n-1} dx$$
Therefore $\int \frac{x^{n-1}}{x^{n}(x^{n}+1)} dx = \frac{1}{n} \int \frac{dt}{t(t+1)}$

We can write the integrand as

 $\frac{1}{t(t+1)} = \frac{A}{t} + \frac{B}{t+1}$

By cancelling denominator

$$1 = A(t + 1) + Bt \qquad \dots(1)$$
Putting t = 0 in (1) $A = 1$
Similarly putting t = -1 in (1) $B = -1$
Thus,
$$\int \frac{dt}{t(t+1)} = \int \frac{1 dt}{t} - \int \frac{-1}{t+1} dt = \log |t| - \log |t+1| + C$$

$$= \log \left| \frac{t}{t+1} \right| + C$$

$$\int \frac{1}{x (x^n + 1)} = \frac{1}{n} \log \left| \frac{x^n}{x^n + 1} \right| + C$$

Ex 7.5, 18

Hence we can write
$$\frac{4t+10}{(t+3)(t+4)} = \frac{-2}{(t+3)} + \frac{6}{(t+4)}$$

Therefore

$$\int \frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)} dx = \int 1 dx - \left[\frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)}\right] dx$$
$$= \int 1 \cdot dx + \int \frac{2}{(x^2+3)} dx - \int \frac{6}{(x^2+4)} dx$$
$$= \int 1 \cdot dx + 2 \int \frac{1}{x^2 + (\sqrt{3})^2} dx - 6 \int \frac{1}{(x^2+2^2)} dx$$
$$= x + 2 \times \frac{1}{\sqrt{3}} \tan^{-1} \frac{x}{\sqrt{3}} - 6 \times \frac{1}{2} \tan^{-1} \frac{x}{2} + C$$
$$= x + \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3}}\right) - 3 \tan^{-1} \left(\frac{x}{2}\right) + C$$

EX 7.5, Q.19		
$\frac{2x}{(x^2+1)(x^2+3)}$	Let $x^2 = t$	Can you suggest
	2x dx = dt	method to solve this
$\int \frac{2x}{(x^2+1)(x^2+3)} dx = \int \frac{dt}{(t+1)(t+3)}$		sum?
$= \frac{1}{2} \int \frac{(t+3) - (t+1)}{(t+1)(t+3)} dt [mu]$	ltiplying and dividing	g by 2]
$1 \cdot (1 \cdot 1)$		
$=\frac{1}{2}\int \left(\frac{1}{t+1}-\frac{1}{t+3}\right) dt$		
$-\frac{1}{1}\begin{bmatrix}1 & dt & 1 & dt\end{bmatrix}$		
$-\frac{1}{2}\left[\int \frac{dt}{t+1} dt - \int \frac{dt}{t+3} dt\right]$		
$-\frac{1}{2}[log t+1] - log t+1$	$211 \pm C$	
$= \frac{1}{2} [log[l + 1] - log[l + 1]]$	- 5[] + C	
$-\frac{1}{1}\left[\log \frac{ t+1 }{ t+1 }\right] + C$		
$= \frac{1}{2} \left[\log \left \frac{1}{t+3} \right \right] + C$		
1, $[x^2+1]$, x^2		
$= \frac{1}{2} \log \left[\frac{1}{x^2 + 3} \right] + C$		

$$\begin{aligned} \mathsf{EX} \ 7.5, \mathsf{Q.21} \\ \frac{1}{e^{x} - 1} \end{aligned}$$

$$\int \frac{1}{e^{x} - 1} dx = \int \frac{1}{t} \times \frac{dt}{t - 1} = \int \frac{dt}{t(t - 1)} \\ = \int \frac{t - (t - 1)}{t(t - 1)} dt \\ = \int \left(\frac{1}{t - 1} - \frac{1}{t}\right) dt \\ = \left[\int \frac{1}{t - 1} dt - \int \frac{1}{t} dt\right] \\ = \left[\log|t - 1| - \log|t|\right] + C \\ = \left[\log\left|\frac{t - 1}{t}\right|\right] + C \\ = \log\left[\frac{e^{x} - 1}{e^{x}}\right] + C \end{aligned}$$

Let
$$e^x = t \Longrightarrow e^x - 1 = t - 1$$

 $e^x dx = dt \Longrightarrow dx = \frac{dt}{t}$

EXERCISE 7.5 – Q. NO: 4, 5, 6, 8, 10, 11, 15, 17

INTEGRALS MODULE - 7

Integration by Parts

Integration by Parts is a special method of integration that is often useful when two functions are multiplied together .

let us see the rule:

 $\int u v dx = u \int v dx - \int u' (\int v dx) dx$

- u is the first function u(x)
- v is the second function v(x)
- u' is the <u>derivative</u> of the function u(x)

As a diagram:

The formula can be stated as:

"The integral of the product of two functions = (first function) x (integral of the second function) -[Integral of (derivative of first function) x (integral of the second function)]"

Where Did "Integration by Parts" Come From?

It is based on the Product Rule for Derivatives :

$$(f(x), g(x))' = f(x), g'(x) + g(x), f'(x)$$

Integrate both sides and rearrange:

$$\oint \left(f(x), g(x)\right)' dx = \int f(x), g'(x) dx + \int g(x), f'(x) dx$$

$$\Rightarrow f(x), g(x) = \int f(x), g'(x) dx + \int g(x), f'(x) dx$$

$$\Rightarrow \int f(x), g'(x) dx = f(x), g(x) - \int g(x), f'(x) dx$$

$$Let f(x) = u \text{ and } g'(x) = v \text{ . Then, } f'(x) = u' \text{ and } g(x) = \int v dx$$

$$\Rightarrow \int uv dx = u \int v dx - \int u'(\int v dx) dx$$

Let's look at an example:

What is $\int x \cos x \, dx$? First choose which functions for u and $v \rightarrow u = x$ and $v = \cos x$.

Now it is in the format $\int u v dx$, so we can proceed : Differentiate $u : u' = \frac{d}{dx}(x) = 1$

Integrate
$$v: \int v \, dx = \int \cos x \, dx = \sin x$$

Simplify and solve :

$$\Rightarrow x \sin x - \int \sin x \, dx$$

DOES INTERCHANGING OF U AND V MAKES A DIFFERENCE :

What is ∫ e^x x dx ? Choose u and $v \rightarrow u = e^{x}$ v = xDifferentiate $u: u' = \frac{d}{dx}(e^x) = e^x$ Integrate $v: \int v \, dx = \int x \, dx = \frac{x^2}{2}$ Next step will $e^{x} x dx$ yield $\int e^x \frac{x^3}{3} dx$ and every subsequent step will keep on getting higher $e^x \frac{x^2}{2} - \int e^x \left(\frac{x^2}{2}\right) dx$ powers of x and hence integration will When will it end never terminate.

Maybe we could choose u and v differently

Choose u = x and $v = e^x$

Differentiate $u : u' = \frac{d}{dx}(x) = 1$ Integrate $v : \int v \, dx = \int e^x \, dx = e^x$

Moral \rightarrow Choose u and v carefully !!!

Choose **u** that gets simpler when you differentiate it and **v** that doesn't get complicated when you integrate it.

The chart given below illustrates the preference order generally adopted for the selection of the first function:

- · Inverse Trigonomteric Function
- Logarithmic Functions
- Algebraic Functions
- Trigonometric Functions
- Exponential Functions
- I: Inverse trigonometric functions such as $\sin^{-1}(x)$, $\cos^{-1}(x)$, $\tan^{-1}(x)$
- L: Logarithmic functions such as log(x)
- A: <u>Algebraic</u> functions such as x², x³
- T: <u>Trigonometric functions</u> such as sin(x), cos(x), tan (x)
- E: Exponential functions such as e^x, 3^x

Ex 7.6, 8 $x \tan^{-1} x$

$$\int x \tan^{-1} x \, dx$$

$$\int Algebraic \quad \text{Inverse}$$

$$\int x \tan^{-1} x \, dx = \int (\tan^{-1} x) x \, dx$$

$$\int x \tan^{-1} x \, dx = \int (\tan^{-1} x) x \, dx$$

$$= \tan^{-1} x \int x \, dx - \int \left(\frac{d(\tan^{-1} x)}{dx} \int x \, dx\right) dx$$

$$= \tan^{-1} x \int x \, dx - \int \left(\frac{d(\tan^{-1} x)}{dx} \int x \, dx\right) dx$$

$$= \tan^{-1} x \cdot \frac{x^2}{2} - \int \frac{1}{1 + x^2} \cdot \frac{x^2}{2} \, dx$$

$$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{x^2}{x^2 + 1} \, dx$$

$$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{x^2 + 1 - 1}{x^2 + 1} \, dx$$

$$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left[\int \frac{x^2 + 1}{x^2 + 1} \, dx - \int \frac{dx}{x^2 + 1} \right]$$

$$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left[\int 1 \, dx - \int \frac{dx}{x^2 + 1} \right]$$

$$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left[\int 1 \, dx - \int \frac{dx}{x^2 + 1} \right]$$

$$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left[x + \frac{1}{2} x + \frac{1}{1} \tan^{-1} \frac{x}{1} + C \right]$$

Using $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$

$$\int \mathbf{U} \, \mathbf{V} \, dx = \, \mathbf{U} \int \mathbf{V} \, dx - \int (\mathbf{U}' \int \mathbf{V} \, dx) \, dx$$

 $\int (\log x) \cdot 1 \, dx = \log x \int 1 \cdot dx - \int \left(\frac{d(\log x)}{dx} \int 1 \cdot dx\right) dx$ $= (\log x)x - \int \frac{1}{x} \cdot x \cdot dx$ $= x \log x - \int 1 \cdot dx$ $= x \log x - x + C$

Example 20 : Find
$$\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$$

Method -1 (Directly use product rule)
 $\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx = \sin^{-1} x \frac{x}{\sqrt{1-x^2}}$
Inverse Algebraic
To find $\int \frac{x dx}{\sqrt{1-x^2}}$
Let $1-x^2 = t$
Then, $-2x dx = dt$
 $\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx = f(x)[\sin^{-1} x] \frac{dx}{\sqrt{1-x^2}}$
Hence,
 $\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$
 $= f(\sin t) t dt$
 $= t, f(\sin t) dt - \int \left[\left[\frac{d}{dt} t \right], f(\sin t) dt \right] dt$
 $= t, (-\cos t) - f 1.(-\cos t) dt$
 $= t, (-\cos t) + \sin t + c$
 $= \sin^{-1} x (-\sqrt{1-x^2}) - \int \frac{1}{\sqrt{1-x^2}} (-\sqrt{1-x^2}) dx$
 $= -\sqrt{1-x^2} \sin^{-1} x + x + C$
 $= x - \sqrt{1-x^2} \sin^{-1} x + c$

$$\therefore \int x(\log x)^2 \, dx = \int (\log x)^2 \, x \, dx$$

$$= (\log x)^2 \int x \cdot dx - \int \left(\frac{d(\log x)^2}{dx} \int x \cdot dx\right) dx$$
$$= (\log x)^2 \cdot \frac{x^2}{2} - \int \left(2(\log x)\frac{1}{x} \int x \cdot dx\right) dx$$

$$=\frac{x^2}{2}(\log x)^2 - 2\int \frac{\log x}{x} \cdot \frac{x^2}{2} dx$$

$$=\frac{x^2}{2}(\log x)^2 - \int x \log x \, dx \qquad \dots(1)$$

$$\int x \log x \, dx = \int (\log x) x \, dx$$

$$= \log x \int x \, dx - \int \left(\frac{d(\log x)}{dx} \int x . \, dx\right) dx$$

$$= \log x \left(\frac{x^2}{2}\right) - \int \frac{1}{x} \cdot \frac{x^2}{2} . \, dx$$

$$= \frac{x^2}{2} \log x - \frac{1}{2} \int x . \, dx$$

$$= \frac{x^2}{2} \log x - \frac{1}{2} \cdot \frac{x^2}{2} + C$$

$$= \frac{x^2}{2} \log x - \frac{x^2}{4} + C$$

Putting value of I_1 in (1),

$$\frac{x^2}{2}(\log x)^2 - \int x \cdot \log x \, dx = \frac{x^2}{2}(\log x)^2 - \left(\frac{x^2(\log x)}{2} - \frac{x^2}{4} + C\right)$$
$$= \frac{x^2}{2}(\log x)^2 - \frac{x^2(\log x)}{2} + \frac{x^2}{4} - C$$
$$= \frac{x^2}{2}(\log x)^2 - \frac{x^2(\log x)}{2} + \frac{x^2}{4} + C$$

1

Let

$$I = \int e^x [f(x) + f'(x)] dx = \int e^x f(x) dx + \int e^x f'(x) dx$$

= $I_1 + \int e^x f'(x) dx$
= $[f(x) e^x - \int f'(x) e^x dx] + \int e^x f'(x) dx$
 $\therefore \int e^x [f(x) + f'(x)] dx = \int e^x f(x) dx + C$

Ex 7.6, 18
Integrate the function :
$$e^x \left(\frac{1+\sin x}{1+\cos x}\right)$$

Simplifying function $e^x \left(\frac{1+\sin x}{1+\cos x}\right) = e^x \left(\left(\frac{1}{1+\cos x}\right) + \left(\frac{\sin x}{1+\cos x}\right)\right)$
 $= e^x \left(\left(\frac{1}{2\cos^2 \frac{x}{2}}\right) + \left(\frac{2\sin(\frac{x}{2})\cos(\frac{x}{2})}{2\cos^2(\frac{x}{2})}\right)\right)$
 $= e^x \left(\frac{1}{2} \cdot \sec^2 \frac{x}{2} + \tan\left(\frac{x}{2}\right)\right)$
 $= e^x \left(\tan\left(\frac{x}{2}\right) + \frac{1}{2}\sec^2\left(\frac{x}{2}\right)\right)$
It is of the form
 $\int e^x [f(x) + f'(x)] dx = e^x f(x) + C$
Thus,
Our Integration becomes $\int e^x \left(\frac{1+\sin x}{1+\cos x}\right) dx = e^x \tan \frac{x}{2} + C$

Example 22

Find
$$\int \frac{(x^2+1)e^x}{(x+1)^2} dx$$

$$\int \frac{x^2+1}{(x+1)^2} \cdot e^x dx = \int \frac{x^2+1+1-1}{(x+1)^2} \cdot e^x \cdot dx \quad \left[\text{Adding and subtracting 1 in numerator} \right]$$

$$= \int \left[\frac{x^2-1}{(x+1)^2} + \frac{2}{(x+1)^2} \right] e^x dx$$

$$= \int e^x \left[\frac{x-1}{x+1} + \frac{2}{(x+1)^2} \right] dx$$
It is of form
$$\int e^x [f(x) + f'(x)] dx = e^x f(x) + C$$
Where $f(x) = \frac{x-1}{x+1}$

$$f'(x) = \frac{d}{dx} \left[\frac{x-1}{x+1} \right] = \frac{2}{(x+1)^2}$$
Thus,
$$= e^x \left[\frac{x-1}{x+1} \right] + C$$

Some more special types of standard Integrals.....

(i)
$$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log |x + \sqrt{x^2 - a^2}| + C$$

(ii)
$$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$

(iii)
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C$$

The above integrals can be proved by taking the constant function 1 as the second function and integrating by parts. Example 23

Find $\int \sqrt{x^2 + 2x + 5} dx$

$$\int \sqrt{x^2 + 2x + 5} \, dx = \int \sqrt{x^2 + 2x + 1 + 4} \, dx$$

$$= \int \sqrt{(x + 1)^2 + 4} \, dx$$

$$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log|x + \sqrt{x^2 + a^2}| + C$$

$$= \frac{x + 1}{2} \sqrt{(x + 1)^2 + 4} + 2 \log|x + 1 + \sqrt{(x + 1)^2 + 4}| + C$$

$$= \frac{1}{2} (x + 1) \sqrt{x^2 + 2x + 5} + 2 \log|x + 1 + \sqrt{x^2 + 2x + 5}| + C$$

Example 24

Find
$$\int \sqrt{3 - 2x - x^2} \, dx$$

 $\int \sqrt{3 - 2x - x^2} \, dx = \int \sqrt{3 - (2x + x^2)} \, dx$
 $= \int \sqrt{4 - (x^2 + 2x + 1^2)} \, dx$ (Adding and Subtracting 1)
 $= \int \sqrt{2^2 - (x + 1)^2} \, dx$ It is of the form
 $\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{a^2}{2}sin^{-1}\frac{x}{a} + C$
 $= \frac{1}{2}(x + 1)\sqrt{2^2 - (x + 1)^2} + \frac{2^2}{2}sin^{-1}\frac{(x + 1)}{2} + C$
 $= \frac{1}{2}(x + 1)\sqrt{3 - 2x - x^2} + 2sin^{-1}\frac{(x + 1)}{2} + C$

HOME ASSIGNMENT.....

• COMPLETE EX – 7.6 AND EX – 7.7